Warch 21． 1945

THE SIMILARITY SOLUTION FOR A CONVERGENT
SPHERICAL SHOGE WAVE NEAR ZERO RADIUS

WORE DONE B \＆：
ね。Wo Celkin
REFORT WRITTEN BY：
J．W．Calkin
R． $\mathrm{E}_{\text {。 Davis }}$

The problem of a convergent apharical shook wave, near zero radiua, 1s studied by means of the aimilarity method. It is found that if n fixed ($p_{s} T$) orelation (1.0.. independent of entropy) is assumed then the mothod nocesitatos taking both pressure and denaity to be zero ahead of the hock. Obviously, thon, the upposed shook becomos a free surface and tho problem reduces to that solved in $14-210_{0}$ In the present report, therefore $p_{0} v_{0}$ arotaken to be rolated by an equation

$$
\mathrm{p}=\mathrm{k} \boldsymbol{T}^{\circ \boldsymbol{\gamma}}
$$

where k is a funotion of ontropye The nature of this funotion need not be speoified, since the assumption of similarity determines the depondence of k On the mas of unshocked material (1.0_{0} on the variablo x introduced below)。

Tho assumption of amilarity may bo desoribed as followaz With f defined by

$$
\begin{equation*}
y=a f t_{0}^{n} \quad a=\text { conat }_{0} \tag{2a}
\end{equation*}
$$

where y is radius, the position of the convergent shook is taken to be piven by

$$
\begin{equation*}
f=f_{0}=\text { oonst } \tag{3a}
\end{equation*}
$$

the sonse of t ime being reversed, and the variables speaifio volumo p proseures u matorial velooity, are asmon to have the form

$$
\begin{equation*}
v=v_{1}(f) t^{q_{1}} p=p_{1}(f) t^{q_{2}}, \quad u=u_{1}(f) t^{q_{3}} \tag{4m}
\end{equation*}
$$

One finde readily $q_{1}=0, q_{2}=2(n-1)_{0} q_{3}=n$ - lo Methoda quite analogous to those of LA-2l0 sorve in this ingtance alse to reduoe the hydrodymamical equation to a aingle firstoorder ordinary differential equation containing the parametor n_{0} Since $v=v_{1}\left(f_{0}\right)$ is constant on the shook $f=f_{0}$ ita value μ is aldo a pamoter, and the general probien is to determine the pairs μ_{0}. n_{0}
for wioh physically satisfactory molutions eximt. This problem is disoussed in oomplete detail analytically, and numerical reanlts obtainod for various Y 。 The phsmomenon of a continuous speotrum of values of n first observed in LiA-210 makes ita appearance here alaga but as in that report, the imposition of the condition of enalytioity appeare to 8 peoify a unique a in any given problemo. With regard to the maluo of μ_{0} for a perfect gan $Y \leqslant 5 / 3$, of course $\mu=(\gamma-1) /(\varphi+1)$. but for other applications envisaged, this oondition need not be onforoed. It is found, however, that always $\mu<\gamma /(\gamma+1)$, aince otherwise the shock is not aubsonic with reforence to the material bohind ito soreover if $p=k v^{-\gamma}$ is taken to be universal ${ }_{0}$ rather than valid only for $v \ll \infty_{0}$ thon $\mu \leq(\gamma-1) /(\gamma+1)_{0}$ The analytio solution for $\gamma=3, \mu={ }_{0} 497_{0}$ whon $n={ }_{0} 636$ is dotermined oomplotely and the results presented in tho form of a table and graphs. In order that these as woll as the graphs dealing with the (μ_{0} n) o relation oan be understood without a detailed reading of the report, a short explanation is given separately (pp 47-8).

1o Description of the Problem Suppose a strong shock of uniform intensity to be oommanicated to the surface of a sphere of inert material a ghook wave will then be induoed in the sphere, travel inwards with spherical symotry about the conter, and ultinately be reflected fram that point. Given the initial strength of the ahook and the requisite thermodymamio information about the substance composing the sphereg the hydrodynamical problem of the motion whioh takse place is completely dofined and susoeptible of numerical integration over a considerable portion of the imard motion I) The oenter of the sphere, however, is a singularity of the hydrodynamical equations and In ocosoquenoe straightformard numerical integration is not indefinitely possible One has, therefore to resort to other means to determine the motion near this point, and it is this problam with whioh we are concerned. To investigate it we employ the so-oalled "similarity" method ${ }^{2)}$: Taking the point to which the shock convergea as origin and reversing the sense of time, t, the assumption of aimilarity amounts to this: that the equation of the incoming shook has the form

$$
\begin{equation*}
y=a r_{0} t^{n} \quad(y=\operatorname{radiu}) \tag{1,1}
\end{equation*}
$$

and that. with f dofined by

$$
\begin{equation*}
y=a f t^{n} \tag{1,2}
\end{equation*}
$$

1) Cf。 a forthooming report by Christy.
2) Cf.p for example, LAo210, "Tho Similarity Solution for a Convergent Freo Surface near Zero Radius", and BU 210, "Powerful Spherical and Cylindrical Shocks in the Neighborhood of the Center of the Sphere and of the Cylinder Axis", Q_{0} Gumarloy. Translated by M. Flint from Lufteahrforsohung, vol. 19, No. 90 20. 10. 42. pp. 301-312.

bohind the hook, the variablen $p(p r e s s u r e)_{p} v$ (specific volume) and u (velooity) are of the form

$$
\begin{equation*}
p=p^{q}(f) t^{q_{1}}, v=v^{q}(f) t^{q_{2}}, u=u^{2}(f) t^{7} \tag{1,3}
\end{equation*}
$$

Here a is a soaling faotor which it is oonvenient to leave free. Continuing the asaumption of aimilarity boyond $t=0$, we alae expect the reflected shock to have the form (1,1), and the form of the functions (1,3) to remain unchanged, tine being measured now in the ordinary sense. The problem then is to determine the exponente $n_{g} q_{1}, q_{2}, q_{3^{9}}$ and the funotions $p^{p} v^{p} u^{p}$ 。 2a Shock Have Boundary Conditions and Thoir Implicationa.

Aoross any shock wave, the quantities $p_{0} u_{0} v_{n}$ are discontinuous ${ }_{0}$ with the discontinuities oubject to the oonservation laws of Rankine, Hugoniot. Let the values of ariable on the two sides of the shook be distinguished by the subsoripts $i_{0} 2_{0}$, I ot U denote shock velooity, and E the interal energy of the substance. Than these laws can be writton as followe
(Conservation of Mes) $\left(v_{1}-v_{2}\right) J=v_{1} u_{2}-v_{2} u_{1}$
(Convervation of Momentum) $\left(\nabla_{1}-\nabla_{2}\right)\left(p_{2}-p_{1}\right)=p_{0}\left(u_{2}-u_{1}\right)^{2}$
(Conservation of Energy) $\quad E_{2}-E_{1}=(1 / 2)\left(p_{1}+p_{2}\right)\left(v_{1}-v_{2}\right)$

In $(2,2)_{0}$ which is not the airect expression of the oonservation of momentum since it takes account of (2,1$)_{0} \rho_{0}$ denotes normal densityo

Our present conoern is only with (2.1). (2.2), First, we observe that for the incoming shock, we have $u_{1}=0, \nabla_{1}=\nabla_{0}=$ oonstant, so that ($2_{0} 1$) beoomes 8 imply (2,4)

$$
\begin{equation*}
\left(1-\sigma_{2} \nabla_{0}^{-1}\right) t=u_{2} \tag{2,4}
\end{equation*}
$$

Henco it is at onoo clear that a solution of the form apocified in (1, 1) (1,2). (1,3) is possible only if

$$
\begin{equation*}
\nabla^{\prime}(f)=0 \quad \text { or } q_{2}=0 ; \quad q_{3}=n-1 \tag{2.5}
\end{equation*}
$$

But if $\nabla^{p}(f)=0$, then (2.4) booomo: $0=u_{2}$, which states that no material crosse the shook. Furthermors, taking $\nabla^{\circ}\left(f_{0}\right)=0$ means in orfect that wo are nogleoting entirely the density of tho material ahead of the ahook. Henoe ${ }_{0}$ under the only reasonable interpretation, $(2,2)$ reduces to $p_{2}=0_{0}$

Now the conditions $\mathrm{U}=\mathrm{u}_{2}, \mathrm{p}_{2}=0 \mathrm{ara}$, in fact, the conditions for a froe surface and thus the altermative $\boldsymbol{F}^{\prime}(f)=0$ leads to the motion of such a surface as the asymptotio limiting form of a convergent spherical shook。 This is not entirely unceasonable, moreover; for while the condition $p_{2}=0$ seon inconsistent with the conoept of a shock ${ }_{0}$ it is to be remembered that bohind suoh a surface, the pressure rises vory steeply to a maximum whioh Dedilles infinite an $\rightarrow O_{\text {, }}$ and of course the distance of the maximum from the free surface approaches zero. Thus it is only very near the surface that the behavior of the pressure is qualitatively different from that behind a shook, The problem to whioh thia alternativo leads, however, has already been solvod (Cf. LAc210), and we shall not, therofors ${ }_{s}$ be further concerned with it hore Rather, wo derote our entire attention to the oase $q_{2}=0_{0}$ where T is a oonatant on each aimilarity curve, including, in particular, the shock, Taking $v_{1}=1, v_{2}=\mu_{B} F_{1}=0$ the equation (2,2) for the incoming shoak becomes in this case

$$
\begin{equation*}
(1-\mu) p_{2}=p_{0} u_{2}^{2} \tag{2,6}
\end{equation*}
$$

and in cons equense $q_{1} ₹ 2(a-1)$. Thus $q_{1}, q_{2} ; q_{3}$ are all determined in terms
of n: amming up we have

$$
\begin{equation*}
q_{1}=2(n-1)_{0} \quad q_{2}=0_{0} \quad q_{3}=n-1 \tag{2.7}
\end{equation*}
$$

In view of the singularity at the origin moreover, we hould have $0<n<1_{0}$ and hence θ_{0} since p depends on t_{j} while ∇ does not, a fixed ($p_{\theta} \nabla$) equation bohind the shook is impossiblo. In other words, under the assumption of similarity, and the oxclusion of the freassurfaco solution already diacussed, one cannot neglect the dependence of the presaure on entropyo Acoordinglyo in treating the alternative $g_{2}=O_{0}$ we are led to assume an adiabatio oquation of state of the form

$$
\begin{equation*}
p=k v^{\kappa \gamma} \tag{2,8}
\end{equation*}
$$

where k is a function of entropy. S_{0}
The applications of the present analyeis are, therefore, IImited to thoso oases in which $(2,8)$ is at least a fair approximationo Thim includes in particular, of oourse for $1<r \leqslant 5 / 3$, the case of a perfeot gas ${ }^{3}$; in addition it is hoped that with $\gamma \sim z_{0}\left(2_{0} 8\right)$ may be approximately true for various motals finally, oonvergent detonation wave may be regarded in the iimit as a pure shook, so that to the extent that (2,8) is a good approximation for the ead produots of an explosion, the problem of the asypptotio 1 imiting form of suoh a wave is subsumed here This applioation is not, of course, of immadiate practicai significanos but is mentioned as of possibio inoidental interest in ooneotion with previous work ${ }^{4}$.
3) Cf. BM 210, aited in footnot:o 2.
4. LA- 143
3. The Lagrangian Equation of Notion. Ono can now proceed immediately to substitute $(1,2),(1,3),(2.7),(2,8)$ into the Eulerian equations of hydrodyamics for tho conservation of mase, momentum, and entropy, thus doriving a system of three ordinary differential equations for the determination of
 introduce a Lagrangian variable x o the radius of a laminar shell of the material when it is distributed at fixed constant density and reduce the Lagrangian equation of motion to a singlo ordinary differential oquation (Cf LA-210): The lattor procedure $i s$ by far the less cumbersome, and leade more readily to a happy choice of variablea; accordingly it is the one which we adopto As our Lagrangian state of referenoe, we take the atate of the material ahead of the shook。

To see that the Lagrangian formulation is equivalent to that of $\oint 1$, wo atart with the oquation

$$
\begin{equation*}
v=y^{2} x^{-2} y_{x} \tag{3.1}
\end{equation*}
$$

whioh, with $(1,2),(1,3), q_{2}=\dot{0}$ given

$$
x^{2} d x=a^{3} v^{-1}(f) f^{2} \cdot d f \cdot t^{3 n}
$$

Thua

$$
x^{3}=F(f) t^{3 n}+G(t)
$$

and since on the shook $y=x_{0} f=f_{0}$ wo have $G(t) \sim t^{3 n}$ 。 Hence we are justified in introducing

$$
\begin{equation*}
x=a w t^{n}, \quad y=a f(w) t^{n} \tag{3.2}
\end{equation*}
$$

Now the function k in $(2,8)$ depends only on x_{p} not on $t_{f} 80$ by (2,3), (2,7)

we have

$$
\begin{equation*}
k(x)=A x^{2(n-1) / n}=A A^{2(n-1) / n} \pi^{2(n-1) / n} t^{2(n-1)} \tag{3.3}
\end{equation*}
$$

where A is a constant ofer any region in tho $\left(x_{0} t\right)$ oplane whioh containe no stocks but can of course have different values in two suoh regions separated by a shook.

With $(3,2),(2,8),(3,3)_{0}$ wo can proceed to derive the governing ordinmey differential equation. The Lagrangian equation of motion ia

$$
\begin{equation*}
y_{t t}=-p_{0}^{-8} y^{2} x^{-2} p_{x} \tag{3.4}
\end{equation*}
$$

From (3,2), wo have

$$
\begin{align*}
& \frac{\partial}{\partial x}=a^{-1} t^{\sigma n} \frac{\partial}{\partial w}, y_{x}=f^{x}, y_{t}=a n\left(f \ldots w f^{0}\right) t^{n-1} \tag{3,5}\\
& y_{t t}=a n^{2}\left(w^{2} f^{\prime \prime}+\operatorname{mof}^{0}-m f\right) t^{n-2} \tag{3.6}
\end{align*}
$$

where

$$
\begin{equation*}
m a(1-n) / n \tag{3.7}
\end{equation*}
$$

For the right side of (3,4), wo obtaing using $(3,5),(2,8)$ (3.3) 0

$$
\begin{equation*}
\left.\rho_{0}^{\infty 1} y^{2} x^{\infty 2} p_{x}=p_{0}^{-1} a^{-2 m}=1 A f^{2} w^{-2}\left(f^{-2 \gamma} f^{\infty-\gamma} w^{2(r}-m\right)\right)^{n-2} \tag{3,8}
\end{equation*}
$$

Acoordingly, with

$$
\begin{equation*}
A=n^{2} a^{2+2 m} p_{0} \tag{3.9}
\end{equation*}
$$

whioh simply fixes the unit of pressure in terms of A_{0} (3.4) becomen

$$
\begin{equation*}
w^{2} \mathbf{i}^{1}+m m f^{\prime}-m f=f^{2} w^{2}\left(f^{-2 Y} f^{-}-r_{w} 2(r-m)^{\prime}\right. \tag{3.10}
\end{equation*}
$$

For cortain parposes, there is an adantage in the further ohange of variable

$$
\begin{equation*}
g(\sigma)=f w^{-1}, \quad \sigma=w^{-1} . \tag{3.11}
\end{equation*}
$$

From this wo have

$$
\begin{equation*}
f^{g}=g-O g^{\prime} \quad f^{\circ}=\sigma^{3} g^{\prime \prime} \tag{3,12}
\end{equation*}
$$

and (3.10) beoomes

$$
\begin{equation*}
\sigma g^{\pi}-g^{\theta}=E^{2} r^{2}\left[g^{-2 \gamma}\left(g-\sigma g^{v}\right)^{-r} \sigma^{2 m}\right]^{\prime} \tag{3.13}
\end{equation*}
$$

For future reference, we note the relations

$$
\begin{aligned}
& u=a n\left(f-w f^{\prime}\right) t^{n-1}=a n g^{\prime} t^{n-1} \text {, } \\
& \nabla=f^{2} w^{2} f^{\prime}=g^{2}\left(g-O g^{p}\right) . \\
& p=n^{2} a^{2} \rho_{0} w^{2(\gamma-m)} f^{-2 \gamma} f^{1-\gamma} t^{2(n-1)}=n^{2} a^{2} \rho_{0} g^{-2 r}(g-\sigma)^{-\gamma} \sigma_{0}^{2 m} t^{2(n-1)} .
\end{aligned}
$$

In all the above aquations involving to the sence of time is reversed for the inward motion. Also, it is to be borne in mind that bince A has two different values on the tro sides of a shock, the same is true of a_{0} by (3.9) 。

Equation (3.10), or alternatively (3.13), then ${ }_{0}$ is the
Lagrangian equation of motion essuming similarity of the type desoribed in $\rho^{f} 1_{s}$ and it is worthwhile to examine from a slightly different point of View the significance of this assumption. In the first place, the assumption that the shook has the form $y=a f_{0} t^{n}$ may be regarded, not as an assumption at all but morely as foousing of attention on the term of lowest order in the expansion of the shock. In this sense, the only assumption is that y oan be expanded in powers of t along the shock. Hext, without roforence to (1.3) o the introduction of the variable is certalnly a natural procedure, since it has the effect of replacing the region in the (x, t)-plane boundod by $t=0$
and $x=a f_{0} t^{n}$, by a quadrant in the (r, t)-planie, and simply introduces instead of (3.4), an oguivalent differential oquation. Now a natural and familiar mothod for solving suoh a partial differential equation over suoh a rogion, is to assume an expansion of the form

$$
\begin{equation*}
y=a \sum_{j=1}^{\infty} \mathbf{i}_{j}(w) t^{n_{j}} \tag{3.15}
\end{equation*}
$$

and this leads in general to a sequenoe of ordinary differential equatione for the functiors f_{j} In our osse the equation (3.9) is simply tho firat equation of this sequence: Gegarded in this light, then the assumption of similarity is only an assumption regarding the regularity of the function y in ita dependence on $w_{0} t^{n}$, and thus one of the kind that is neoessarily consistentiy adopted in physics This, of course, says nothing with regard to the adiabstio oquation of state $(2,8)$, but oven thare a similar point of view may be adopted for
 assume

$$
p=\sum_{j=1}^{\infty} k_{j}(S)^{-\gamma_{j}}
$$

The equation (2,8) may thea be taken as the first torm in this oxpansion and thus (2,8) is valid to the extent that only this first term is sigaifloanto Hence, Irrespeotive of quantitative considerations and the gaps in our experimental knowledge, results derived from the procedure wo have adopted do at the least furnish qualitative insight into the problem, and must desoribe the limiting behavior correctly to the extent that the hydrodynamical idealization itself has validityo 4o The Boundary Conditione There are four ourves in the (x, t) oplano whtoh play a oritical role in the problem bofore us, namely, the inooming shook, the Iine $t=0$, the reflected shock, and the halfoline $x=0$, $t>0$ 。 We oonsider now
the conditions to be satisfied on these 。
(a) The converging shock i Here $y=x_{0}$ so $f=w_{0}$ or $g(\sigma)=L_{0}$ Next the constant compression ratio on the shock is a parameter in the problem g and must be given before quantitative results an be determined. We denote its value by μ_{2} e above Finally wo must satisfy $(2,6)$. which in view of (2,4) may be written

$$
\begin{equation*}
p=p_{a} v^{2}(1-\mu) \tag{4.1}
\end{equation*}
$$

Now, by (303) $(3,4), p=n^{2} a^{2} \rho_{0} \mu^{-\gamma} \sigma^{2 n} t^{2(n-1)} \operatorname{san} j^{2}=a^{2} n^{2} \sigma^{2} t^{2(n-1)}$

Thus, (4.1) becomes

$$
\begin{equation*}
\sigma^{2+2 n}=(1-\mu) \mu^{\gamma} \tag{4,2}
\end{equation*}
$$

Hence, using $(3.14)_{\rho}$ we have on the converging shook

$$
\begin{equation*}
\left.\sigma=(1-\mu) \mu^{\gamma}\right)^{1 /[2(1+m)]}, g=1, g \circ \sigma g^{p}=\mu \tag{403}
\end{equation*}
$$

Note that since a is a free scalar, no point in the incoming shook is doters mined by (402)。

The role of the equation (2.3) for the conservation of energy is this: It permits us to find E as a function of $p_{0} v_{p}$ and the parameter μ_{p} in the Light of (2,8) o For we have

$$
d E=-p d v+T d S
$$

($T=$ temperature), and thus, by $(2,8)$

$$
\begin{equation*}
E=\frac{p v}{(Y \infty 1)}+G(k) \tag{4.4}
\end{equation*}
$$

Now taking $G(k)=0$ for $p=O_{0}$ wo have on the high pressure side of the shock o from (2.3)

$$
\begin{equation*}
E=\frac{7}{Z} p(1-\mu) \tag{4.5}
\end{equation*}
$$

Thus

$$
Q(k)=p\left[\frac{1}{2}(1-\mu)=\frac{\lambda}{\gamma=1} \mu\right]=\frac{1}{2} p\left(1-\frac{\gamma+1}{\gamma \infty 1} \mu\right) .
$$

Hence

$$
\begin{equation*}
G(k)=C x_{0} C=\frac{1}{2}\left(1-\frac{\gamma+1}{\gamma-1} \mu\right)_{\mu}^{-\mu}, \tag{4,6}
\end{equation*}
$$

and

$$
\begin{equation*}
E=\frac{p \nabla}{\gamma-1}\left[1+(\gamma-1) C \nabla^{\gamma}-1\right] \tag{4,7}
\end{equation*}
$$

For an ideal gas, of ourse $C=O_{0}$ and one ham necossarily the fandiar rosult $\mu=(r \circ 1) /(r+1)$; for the other applications mentioned, howevero this value of μ is not nocossarily presoribed。
(b) $t=0:$ Hera, for fixed $x_{\rho} w \rightarrow \infty, f(w) \rightarrow \infty_{0} \sigma \rightarrow 0_{0}$ However, y_{0} y_{t} must be regular functions of x_{0} Since almays $y=\mathbb{g}(\sigma) x_{0}$ it follows that
 fors $\sigma \rightarrow 0_{0}$ Thus, at $\sigma=0$

$$
\begin{equation*}
g(\sigma)=c_{0}+c_{1} 0^{1+m}+\cdots \infty, c_{0}>0, c_{1} \neq 0 . \tag{408}
\end{equation*}
$$

It is readily determinod that the general solution of (3.12), in the aeighborhood of $\sigma=0$ is

$$
g(\alpha)=\sum_{j=0}^{\infty} c_{j} \sigma^{j(1+m)}
$$

with C_{0}, C_{1} as oonstants of integration $C_{j}=C_{j}\left(C_{0}, C_{1} ; m\right)_{0} j>I_{0}$ Since e_{0} for the inward motiong tho aonse of time is roversed, the continuity of $y_{0} u$ at $t=0$ implies that C_{0} is the same for the inward and outward motion, whine the values of C_{1} for the two phases difier only in signa $C_{1}>0$ (inward). $c_{1}<0$ (outward) 。

- 2

(c) The reflected shock: Since A_{0} a have different falues on the two sides of this shock, while $x_{\text {, }} y_{0} t$ are of course continuous, f, ware dise continuous: $a_{1} f_{1}=a_{2} f^{p} a_{1} w_{1}=a_{2} 2^{\circ}$ Agcordingly σ is discontinuous σ_{0} oontinuous:

$$
\begin{equation*}
a_{1} \sigma_{2}=a_{2} \sigma_{1} \cdot s_{1}=g_{2} \tag{4,10}
\end{equation*}
$$

From $(2,1),(2,2)_{0}$

$$
\nabla_{1}^{2}\left(p_{2}-p_{1}\right)=p_{0}\left(v_{1}-\nabla_{2}\right)\left(\pi-u_{1}\right)^{2}
$$

Now $_{0} U \circ u_{1}=a_{1} n w_{1} f_{1} t^{n-1}, \nabla_{1}=g^{2} f_{1}$.
so we have

$$
g^{2}\left(p_{2}-p_{1}\right)=n^{2} a_{1}^{2} \rho_{0} \sigma_{1}^{-2}\left(v_{1}-v_{2}\right) t^{2(n-1)}
$$

Also

$$
p_{1}=a_{1}^{2} \sigma_{1}^{2 m} v_{1}^{-\gamma_{t} 2(a-1)}=a_{1}^{2} \sigma_{1}^{-2} \sigma_{1}^{2+2 m} v_{1}^{-\gamma} t^{2(n-1)}
$$

and using (4.10),

$$
p_{2}=a_{2}^{2} \sigma_{2}^{2 m} v_{2}^{o \gamma} t^{2(n-1)}=a_{1}^{2} \sigma_{1}-\alpha_{\sigma_{2}}^{2+2 m} v_{2}^{-\gamma} t^{2(n-1)} .
$$

Thus, (2,2) bocomes

$$
\begin{equation*}
\varepsilon^{4}\left(\sigma_{2}^{2+2 m} \nabla_{2}^{\omega \gamma}-\sigma_{1}^{2+2 m} v_{1}^{-\varphi}\right)=\nabla_{1}-\nabla_{2}, \tag{4.11}
\end{equation*}
$$

or

$$
g^{1 \infty 5 r}\left[\sigma_{2}^{2+2 m}\left(g-\sigma_{2} g_{2}^{\prime}\right)^{-\gamma}=\sigma_{1}^{2+2 n}\left(g-\sigma_{1} g_{1}\right)^{-\gamma}\right]=g_{2}^{\prime}-g_{1}^{\prime} \cdot(4012)
$$

Finally, from (4.7), (2,3), (4.10)

$$
\begin{equation*}
\left(\frac{\sigma_{2}}{\sigma_{1}}\right)^{2+2 \pi}\left(\frac{v_{1}}{v_{2}}\right)^{\gamma}=\frac{(\gamma+3) v_{1}-(\gamma-1) v_{2}+2(\gamma-1) c v_{1} \gamma}{(\gamma+1) v_{2}-(\gamma-1) v_{1}+2(\gamma-1) c v_{2}} \tag{4.13}
\end{equation*}
$$

(a) $x=0, t>0$; Here we hewe $w=O_{p} f(w)=O_{0}$ so it is converient to use (3.10), rather than (3.13). Setting

$$
\begin{equation*}
f=A_{i}{ }^{W} \tag{4.14}
\end{equation*}
$$

we obtain for the term of lowest degree on the loft side of (3.10)

$$
{ }_{\beta}{ }_{\beta}(\beta-1)(\beta+m){ }^{w}{ }^{\beta} .
$$

and for the torm of lowest dogrec on the right-hand side

$$
-\beta^{-r} A \beta^{2-3 r}[3 r(1-\beta)-2 \pi] w^{(2-3 r) \beta+3(r-1)=2 m}
$$

Now, if $\beta=1_{0}$ the left side contributes only terms of dagrae greater than 1_{0} while the term of lowost degree on the right has degree ol o $2 \mathrm{~m}_{\theta}$ obviousiy less than i_{o} So $\beta=1$ is impossiblo, and $\beta=-m$ is obviousiy absurd ${ }_{\circ}$ Hence we have

$$
\begin{equation*}
\beta=(3 r-2 m) / 3 r, A^{A} \beta \text { arbitrary; } \tag{4.25}
\end{equation*}
$$

or the two above expressions are of the same degree and

$$
\begin{equation*}
\beta=\frac{3(r-1)-2 m}{3 r-1},{ }^{A} \beta^{1-3 r}=\frac{3(r-1)(1+m)^{2} \beta^{r}}{(3 r-1)(3 r+m)} . \tag{4.16}
\end{equation*}
$$

In both oases $\beta<1_{0}$ and since $\nabla \sim \sim^{3(\beta=1)}, w \rightarrow 0_{0}$ wo have $\nabla \rightarrow \infty$ in both sases. On the other hand $p \sim \sim^{-2 m} \sim \gamma \sim \sigma^{3 \gamma-2 m-3 \gamma \beta}$. So, acoording as (4015) or (4.16) holds, we have p ~const., or $p \sim w(6 y+2 m) /(3 r-1) \rightarrow 0$ for $w \rightarrow 0$ 。 Wo shall soe in $\oint 9$ that (4.15) is actually the only possibility, since the boundary conditions (c) cannot in fact be satisfied for (4.16). 5o Thermodynamio Considerations. The problem outlined in $\oint_{j} \oint 3,4$ is complotely dotemanate from the point of view of dynamion. Thermodynamically, however, it is indeterminate without the postulation of a further relation - for example, apecification of the dependence of k on entropy would auffice. However, even
without this $(2,8)$, (407) have cortain thermodymanic implications, and we pauso to consider theso. Using $(2,8)$, wo have from $(4,7)$.

$$
\begin{equation*}
T=\left(\frac{d E}{d S}\right)_{V}=\frac{1}{\gamma-I}(v i \gamma+1+(\gamma-1) C) \frac{d k}{d S} . \tag{5.1}
\end{equation*}
$$

Now certainly $\mathrm{dk} / \mathrm{dS}>\mathrm{O}_{0}$ so we must havo

$$
\begin{equation*}
v^{\circ \gamma+1}+(\gamma-1) 0 \geqq 0 \tag{5,2}
\end{equation*}
$$

But we have just seen that at $x \rightarrow O_{p} t>0, v \rightarrow \infty$, and thus (5,2) reduces to

$$
\begin{equation*}
c \geqq 0_{0} \quad \mu \leqq(r-1) /(r+1) \tag{5,3}
\end{equation*}
$$

Thero are two points of viow which one can adopt with respect to (5.3) e First, if one regards (2,8) as universally valid then (508) is also universally valid and (5.3) is a nocossary condition on μ_{0} On the othor hand If one takes $(2,8)$ to be an approximation ralid only for $\nabla \ll \infty$, thon (503) has no special significance. In this instance howover, (2,8) must be roplaced by something olse bohind the rofleoted shock, and one is not in position to consider the reflection problem at all. without knowiedge of the adiabatio $\mathrm{for} \bar{\sim} \sim \infty$. So (5,3) must oortajnly be satisfied if the problem of the rofleoted shock is to be considered by the mothod adopted in $\oint \oint 3.4$ 。 By way of furthor orientation, let us suppose that

$$
\begin{equation*}
q=h(\nabla) p^{\beta} \tag{5.4}
\end{equation*}
$$

This is justifiable, insofar as wo are intereated in p~o, T~m。 Thens from (5.1). (5.4)

$$
h(v) v^{-\gamma \beta}{ }_{k}^{\beta \beta}=\frac{1}{\gamma-I}\left[v^{\gamma \gamma+1}+(\gamma-1) c\right] \frac{d k}{d S} .
$$

Since if is a function of S alone, this yields

$$
\left.\begin{array}{rl}
h(v)= & D[v(1-\beta)+1+(\gamma-1) \\
\sim v^{\gamma \beta}
\end{array}\right] \cdot D=\text { canst }_{0}>0_{0} .
$$

If $\beta=1_{0}$ wo here

$$
\begin{equation*}
\mathbf{x}=K e^{D S} \tag{5.5}
\end{equation*}
$$

otherwise

$$
k=(\alpha s+d)^{1 /(1-\beta)}
$$

Since, for $S \rightarrow \infty, k \rightarrow \infty$, wo have $\beta \leq \mathbb{1}_{0}$ Now, from

$$
\mathrm{Dp}_{\mathrm{p}}^{\beta}\left(\mathrm{v}^{\gamma \gamma(1-\beta)+1}+(\gamma-1) \mathrm{Cv}^{\gamma \beta}\right)=T
$$

wo have

$$
\begin{equation*}
(1-\gamma(\lambda-\beta))+\gamma \beta(\gamma-1) C_{v}^{\varphi-1} \geqq 0 \tag{5.7}
\end{equation*}
$$

since for $T=$ canst., p must be monotone decreasing in ∇_{0} This is always satisfied if $\beta \geq(r-1) / \gamma$ o but an fail for smaller β. Thus, for such β o (5.7) can result in a stronger restriction on μ_{0} or, to put it anothor way to assume a fixed value for μ is inconsistent with too small a β in (5.4) o $i_{0} c_{0}$ implies $\beta \geqq \beta_{0}$. The value of β_{0} however depends in general on the range of ∇ in the problem and has as we have observed the value $(\gamma-1) / Y$ only for $\mu=(\gamma-1) /(\gamma+1)$ 。 We do not pursue this matter further, but mention it simply by way of emphasizing that the choice of μ imposes restrictions on any thermodynamic assumptions witch one may wish to make subsequently. 6. Transformation of the Fundamental Equation to an Equation of the First Order.

We now apply to (3.13) tho technique used in Lho210. The analytical details

are so closely similar to those of the report cited that wo noed only outline the procedure and give the results, The first step is to introduce now variables $a, h_{s} \hat{i}$ defined by the equations

$$
\begin{equation*}
\sigma=e^{s}, g=e^{a s} h, g-\alpha g^{g}=e^{a s} \ell \tag{6,1}
\end{equation*}
$$

From the second and third equations wo have

$$
\begin{equation*}
[(1-a) h \propto l] d s=d h . \tag{6,2}
\end{equation*}
$$

Substituting $(6,1)$ in $(3,13)_{a}$ we find that the choice

$$
\begin{equation*}
a=\frac{2(1+m)}{3 r-1} \tag{6,3}
\end{equation*}
$$

randers the equation homogerioous in $\sigma_{\text {, }}$ and using $\left(\sigma_{0} 2\right)_{0}$ wo obtain accordingly

$$
\begin{aligned}
& {[(1-a) h-l]\left[1-r h^{2-2 \gamma} \ell-(r+1)\right] a l=} \\
& =\left\{2 r h^{1}-2 r \ell^{-r}[(1-a) h-l]=\left[(a-m) l+m h=(a+2) h^{2-2 r} l^{-r}\right]\right\} d h
\end{aligned}
$$

Next s in order to get rid of the γ in the exponents, wo set

$$
\begin{equation*}
\xi=\ell^{\infty 1}, \eta=h^{1-2 r} \ell^{-r} \tag{6,5}
\end{equation*}
$$

Then (6,4) becomes simply

$$
\begin{equation*}
\frac{d n}{d \xi}=\frac{n}{\xi} \frac{N}{D} 0 \tag{6,6}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
N=(2 r-1) \xi^{2}+r \eta \xi-(2 r-3+(r-2) m) \xi-3 r \eta+r m_{0} \tag{6,7}\\
D=\xi^{2}-3 r \eta \xi-(1-m) \xi+(3 r-2 m) \eta=m_{0}
\end{array}\right\}
$$

One obtains readily the relation

$$
\begin{equation*}
N+\gamma D=(3 \gamma-1)(\xi-1+a)(\xi=\gamma \eta), \tag{6,8}
\end{equation*}
$$

the importance of which will appear presently and finally, from (6,2), (604) (6.5), we have

$$
\begin{equation*}
d s=\frac{r \eta-\xi}{D} \frac{d \xi}{\xi}=\infty \frac{r \eta-\xi}{\eta} \frac{d \eta}{\eta}= \tag{6,9}
\end{equation*}
$$

For subsequent reference, we now note various relations between the varitibles $\xi_{0} \eta$, and the variables, $g_{0} \sigma_{0} u_{0} \sigma_{0} \dot{p}$

$$
\left.\begin{array}{l}
\xi=1 \cdot B^{-1} B^{\nu} \sigma \\
\eta=E^{1-2 \gamma}\left(g=\sigma G^{0}\right)^{\sigma \gamma} \sigma^{2(1+m)} ;
\end{array}\right\}
$$

Next, wo formulate the boundary conditions (a), (b), (c), (d) of $\oint 4$ in terms of ξ, η, a: (a) The converging shook: Substitution of (403) in $(6,10)$ yields at once

$$
\begin{equation*}
\xi=\mu_{p} \eta=1-\mu_{g} s=\frac{1}{2(1+m)} \log (1-\mu) \mu^{\varphi} \tag{6,13}
\end{equation*}
$$

(b) $t=0$: Hero $\sigma \rightarrow 0$, so $\rightarrow \infty$. Substituting $(4,8)$ in (6,10), moreover, gives

$$
\left.\begin{array}{l}
\xi=1=\{1+m) c_{0}^{-1} c_{1} e^{(1+m) s}+0000 \tag{6.14}\\
\eta=c_{0}^{1-3 \gamma} e_{0}^{2(1+m) s}+\ldots 0 .
\end{array}\right\}
$$

Thus, $\xi=\lambda_{0} \eta=0$, for $s=-\infty$. Boroovor, we have, from (6,14)

$$
\frac{d \xi}{d \eta}=\frac{(1+m)}{2} c_{0} 3(y-1) / 2 c_{1} \eta^{-1 / 2}+\ldots 0
$$

Thus, summing upo

$$
\begin{equation*}
s \rightarrow \infty, \xi \rightarrow 1, \quad \eta \rightarrow 0, \xi=1-\mathrm{B} \eta^{2 / 2}+\infty, \tag{6,15}
\end{equation*}
$$

where

$$
\begin{equation*}
B=(1+m) c_{0}^{3(r-1) / 2} c_{1} \tag{6,16}
\end{equation*}
$$

We have already obsorved that the C_{0} is the same for the Inward and outward motions, while the two $\mathrm{C}_{1}{ }^{\text {s }}$ differ in sign tho C_{1} for the inmard motion being positive。 Henoe $B>0$, for tho invard motion and ita nogative belongs to the outward motion。 (o) The reflected shock: From (6.10), we have

$$
\eta \xi^{\gamma}=g^{1}=3 \gamma \sigma^{2(1+m)}
$$

Hences $^{\text {since } g}$ is continuous

Using the first of the oquations $(6,12)$, with (4o11) we now ootain

$$
\xi_{\varepsilon}^{1}-3 r\left(\sigma_{2}^{2+2 n} \xi_{2}^{-\gamma}-\sigma_{1}^{2+2 m} \xi_{1}^{-\gamma}\right)=\xi_{1}-\xi_{2}
$$

and this with $\eta \xi^{Y}=g^{1}-3 r o^{2+2 m}$ gives

$$
\begin{equation*}
\xi_{1}+\eta_{\mathbb{R}}=\xi_{2}+\eta_{2} \tag{6,1.8}
\end{equation*}
$$

Finally, (4,13) cun be wititen

$$
\left(\frac{\sigma_{2}}{a_{1}}\right)^{2(1+m)}\left(\frac{\varepsilon_{1}}{\xi_{2}}\right)^{r}=\frac{(r+1) \xi_{2}-(\gamma-1) \xi_{2}+2(r-1) c_{5}^{3(r-1)} \xi_{1} r}{(r+1) \xi_{2}-(r-1) \xi_{1}+2(r-1) c_{5}^{3(r-1)} \xi_{2}^{r}} .
$$

Combining this with $(6,17)_{0}$ wo obtuin

$$
\begin{equation*}
\frac{\eta_{2}}{\eta_{B}}=\frac{(x+1) \xi_{2}-(r-1) \xi_{2}+2(r-1) c_{g}^{3(r-1)} \xi_{g}^{r}}{(r+1) \xi_{2}-(r-1) \xi_{1}+2(r-1) c_{E}^{3(r-1)} \xi_{2}^{r}}, \tag{6,19}
\end{equation*}
$$

Nows lot the subseripte 2 denote the highoprossuro θ_{0} and thus high-donsity side of the shook. Thex since $p_{2}-\rho_{1} \sim \xi_{\lambda}=\xi_{2}$, wharo using al so (6,18)

$$
\begin{equation*}
\xi_{2}<\xi_{1} \cdot \eta_{2}>\eta_{1} . \tag{6.20}
\end{equation*}
$$

It is to be observed that the conditions $(6,18)(6,19),(6,20)$. whilo of spocial intorest to us with respeot to the roflocted shook are in reality entirely goneral and apply to any shook in the material after tho initial shock, however induced. They imoly, inoldentally that such a shock must bo on a similarity curvo $y=a f(w) t^{n}$, and thus ronder our assumption in § $\left\{\right.$ that the reilected shock is such a ourvo, a theorem ${ }_{c}$

For a given ξ_{1} e η_{1}. ge the corresponding ξ_{2}, η_{2} aro obtained by intorsocting the straight line (6.18) with the ourva (6.19) o one point of intersootion is $\xi_{2}=\xi_{1}, \eta_{2}=\eta_{1}$, and the socond is the dosirod one ${ }_{c}$ That there are only two is apparent from the fact that for any σ_{2}, the curve $(6,17)_{0}$ and (6,18) heve at most two points of interseotion. To determine when there is only one point of intersection wo set

$$
\xi_{2}=\xi_{1}+\varepsilon
$$

Then (6.18) aives $\eta_{2}=\eta_{1}-\varepsilon$, and (6.39) becones

$$
\eta_{1}=\gamma^{-1} \xi_{1}+O(\varepsilon)
$$

Heane the highoprossure side of the shock is always above the lowopressure side always below, $\gamma \eta \infty \xi=0,1_{p} \theta_{0}$

$$
\begin{equation*}
r \eta_{2}=\xi_{2}>o_{0} \quad r \eta_{1}-\xi_{1}<0 \tag{6.21}
\end{equation*}
$$

Thus as the strength of the shook approaches eero $\left(\xi_{1} \eta_{1}\right)_{0}\left(\xi_{2} \eta_{2}\right)$ tend to colnaidence on the line $\gamma \eta=\left\{=O_{0}\right.$ This is in fact to be expectod since $\gamma \eta-\xi=0$ is one of the conditions for a oharacteristic through the origin, end thus a necescary condition for a sound weve through the origina. To see this we have only to rote that in such a cieracteristic the coeffiaient of $g^{\prime \prime}$ in (3.13) wast wanish. This cooffioient is readily found to be $\sigma\left[1-\gamma g^{2-2 \gamma} \sigma^{2+2 \sigma_{1}}\left(g=\sigma g^{v}-\gamma-1\right]\right.$ which by $\left(6_{c} 10\right)$ ia $\sigma\left(1-\gamma \eta \xi^{-1}\right)_{c}$ Thus it vanithes for $\gamma \eta_{0}=\xi=0$ and $0=0$. The lattor root corrosponde to $x=\infty \quad p=O_{s}$ sound velocity $=O_{p}$ so the significant ono is $\gamma \eta_{0} \xi=0_{0}$ (d) The Iine $x=0_{0} t>0$: Here $\rightarrow 0_{0} a \rightarrow+\infty, E \rightarrow+\infty$ 。From $(4,14)_{0}$ we have

$$
g=A_{\beta} \sigma^{1=\beta}+\ldots 0 g=\sigma g^{\prime}=\beta A_{\beta} \sigma^{1-\beta}+\infty 0
$$

Henge by $(6.1 B)_{0}$

$$
\xi \rightarrow \beta, \quad \eta=\beta^{0 \gamma} \quad A \beta^{1-3 r}{ }_{\sigma}(3 \gamma \sim 1) \beta-3 r+3+2 n+\ldots 0
$$

Honoe, if (4, 15) holds, wo have

$$
\begin{equation*}
\xi \rightarrow \frac{3 \gamma-2 m}{3 r}, \eta \rightarrow \infty \tag{6,22}
\end{equation*}
$$

Whilo if (4.i6) holds. we have

$$
\begin{equation*}
\xi \rightarrow \frac{3(\gamma-1)-2 m}{(3 r-1)} \cdot \eta \rightarrow \frac{3(\gamma-1)(1+m)^{2}}{(3 r-1)(3 \gamma+m)} \tag{6.23}
\end{equation*}
$$

It fo convenient now to introduce as follows symbols for the points in the $(\xi \vee \eta)=p l a n e$ wion correspond to our boundary conditions

$$
\left.\begin{array}{l}
p_{\mu}: \xi=\mu_{\theta} \eta=1=\mu: P_{1}: \xi=I_{0} \eta=0 \tag{6,24}\\
P_{\infty}: \xi=\frac{3 r-2 n}{3 r}: \eta=\infty: \\
P_{0}: \xi=\frac{3(r-1)=2 m}{3 r-1}, \eta=\frac{3(r-1)(1+m)^{2}}{(3 r-1)(3 r+m)}
\end{array}\right\}
$$

Our reguired solution can then be desoribed as follows: It is conposed of two integral curves of $(6,6)$; one ourve $P_{\mu} P_{1} P_{S_{1}}$ phere $P_{S_{1}}$ is the point $\left\{\xi_{I_{D}} \eta_{1}\right.$) corrosponding to the lownepessure side of the refloctod shook; the other a ourvo $P_{S_{2}} P_{\infty}$, or $P_{S_{2}} P_{o}$ where $P_{S_{2}}$ is the point $\left(\xi_{2} \eta_{2}\right)$ corresponding to the high-pressure side of the refleoted shock。 The pointe $\left(\xi_{1}, \eta_{1}\right),\left(\xi_{2}, \eta_{2}\right)$ are related by $(6,18),(6,19)$. The ourve $P_{\mu} P_{1} P_{S_{1}}$ must have $d \eta / d \xi=0$ at P_{P} and on $P_{\mu} P_{i}$ as must bo monotone docreasing from ita value at P_{μ} to \therefore © at P_{1} O On the discontinuous curve $P_{1} P_{S_{1}} \quad P_{S_{2}} P_{\infty}$ (P_{0}) S must bo monotone increasing from $-\infty$ at P_{1} to $+\infty$ at $P_{\infty}\left(P_{0}\right)_{0}$ In order to undore stand et least qualitatively the implications of all of these conditions. wo turn noxt to an examination of the vector field of (6.6).

7. Quelitative Discussion of the Reduced Differential Equation. To bogin. we consider the implication of the required monotonicity of S on the curve $P_{\mu} P_{1}$. For this wo must have

$$
\begin{equation*}
\frac{r \eta-\xi}{D} \frac{d \xi}{\xi}=\frac{r \eta-\xi}{d \eta} \frac{d \eta}{\eta} \geqq 0 . \tag{7.1}
\end{equation*}
$$

by (6.9) . From (6.12),$\eta<0$ implies $p<0_{0}$ while $\xi<0$ inplien $v<0_{0}$ so always $\xi \geqq 0, \eta \geqq 0$. From the equation $(6,6)$ itselfo it follow that a change in sign in $d \xi$, ($d \eta$) implies and is impliod by a chango in sign in $D(\mathbb{N})$, except at singularities of the differential equation. Henco, what mattors is whethor or not $P_{\mu} P_{1}$ crosses $Y \eta-\xi=O_{c}$ Now P_{μ} is on the ine $\xi+\eta=1$, and this intersecte $\eta \eta=\xi=0$ at $\xi=r /(\gamma+1) 。 \eta=1 /(\gamma+1)$. Hence if $(5.3)_{0} \mu \leqq(r-1) /(\gamma+1)$, is to be satisfied, P_{μ} lies above $r \eta_{0} \xi=0$, and P_{1} is always bolow it。 Even without (5.3), in fact, the point P_{μ} must lie above $Y \eta-\xi=0_{0}$ For from (6.12), wo havo for sound volooity c ralative to the material
s

$$
\begin{aligned}
& 0^{2}=\gamma p p^{-1}=\gamma_{n}^{2} a^{2} g^{2} o^{-2} \eta \xi t^{2(n o 1)} \\
& u+0=a n g o^{-1}[1-\xi+\sqrt{\gamma \eta \xi}] t^{n-1}
\end{aligned}
$$

Hence $\mathrm{J} /(\mathrm{u}+\mathrm{c})=(1-\xi+\sqrt{\gamma \xi \eta})^{-1}$, and this is less or greater than unity according as $Y \eta \geqslant \xi$, Heace. without referonce to $(5.3)_{0}$

$$
\begin{equation*}
\mu<\frac{r}{\gamma+I} \tag{7,2}
\end{equation*}
$$

since a shock with vel ooity less than sound velocity behind it could not be started. This needs to be noted in any problem in which (208) is not taken to be uaiversal ${ }_{c}$

From (7,1), (6,8) it follows thet the solution $p_{\mu} P_{1}$ must oross $\eta \eta_{0} \xi=0$ at a point of intersoction with $N=0, D=0$, and hence wo must insist on the existence of such a point. Substituting $Y \eta=\xi$ in $\mathbb{N}=0$, wo obtain the two roote

$$
\begin{equation*}
\xi_{+}=\frac{2 \gamma+(\gamma-2) m \pm \sqrt{[2 \gamma+(r-2) m]^{2}-8 \gamma^{2} m}}{4 r} \tag{7,3}
\end{equation*}
$$

and thus have

$$
[x \gamma+(r-2) m]^{2}-\theta r^{2} m \geq 0
$$

which is oquivalent to

$$
\begin{equation*}
m \leqq \operatorname{2r}(\sqrt{\gamma}+\sqrt{2})^{-2} \text { or } m \geq \operatorname{lr}(\sqrt{\gamma}-\sqrt{2})^{-2} \tag{7.4}
\end{equation*}
$$

as a condition on m_{s} It is readily datormined from (7.3), moreover, that for $m \geqq 2 \uparrow(\sqrt{\gamma}-\sqrt{2})^{-2}$, whave $\xi+<0$ or $\xi_{ \pm}>1$ according as $\gamma \leqslant 2$ 。 Now $\xi_{ \pm}>1$ neans $u<0_{0}$ and on $P_{\mu} P_{1}$ this would mean that the material is

Henco

$$
\begin{equation*}
m \leqq 2 r(\sqrt{\gamma}+\sqrt{2})^{-2} \tag{7.5}
\end{equation*}
$$

It is now helpful to examine the configuration of curven $N=O_{0} D=O_{0}$ $\forall \eta=\xi=0_{0} \xi+\eta=\mathbb{I}$ in a fow typioni cases. These aro shown in Figs. lag
 The signs in the various portions of the plane separated by $N=O_{2} D=O_{0}$ are the signs of $d u / d v$ in those regions.

Our next stop is to analyze qualitatively the veotor field of the differontial oquation. To thia end, wo begin by considering its behavior in the neighborhood of its singularitiea, $i_{0} 0_{0}$ points of interseation of the

$100 i_{B} u N=O_{a} \quad \nabla D=O_{c}$ In the portion of the plane in wioh we are interested ${ }_{0}$ those points are as follows：
（0）：the origin：$\xi=0_{0} \eta=0_{i}$
（1）：$P_{I}: \xi=I_{0} \eta=O_{B}$
（2）：$P_{2}: \quad \xi=0_{0} \quad \eta=m / 3 ;$
（3）：the points $P_{0}, P_{\infty} \rho_{+^{3}}$

As in Law210，exoluding the spociel cases of colnoidunce of one or more of those pointe，the possibilities for any one of them is that it be hyperbolio． a spiral point of a sheaf－point．The reader who is unfamiliar with the meaning of theso torms or with the analysis of singularitios of firstoorder difforential equations．is reforred to $\{5$ of LAD210，whore a brief discussion is given。 Wo asmug hero complete familiarity with thet material and turn now to m discussion of the points listed above．
$(0): \xi=0, \eta=0$ o This point playa no diroct rôl in our problom $_{0}$ but it is worthwhile to noto its detureo．It is readily seen to bo a hyperbolio point，the trio solutione through it being $\xi=0, \eta=0$ 。
（1）：$P_{1}: \xi=I_{0} \quad \eta=0$ 。 This is the point corresponding to $t=0_{0}$ as we have notod in $\oint 6$ ，（b）．Sotting $\eta=\lambda(\xi-1)+\ldots$ in $(6,6)$ ． we find tho integral

$$
\begin{equation*}
I_{1}: \eta=-\frac{1+m}{2}(\xi-1)+\infty 0 \tag{7.6}
\end{equation*}
$$

and the integral

$$
\begin{equation*}
\eta=B^{-2}(\xi-1)^{2}+\ldots \tag{7.7}
\end{equation*}
$$

where B is arbitrary and related to $C_{0,} C_{1}$ ，by（ 6,16 ），nocording to $\oint 6$ ，（b）。

Fig. 2 shows the disposition of solutions in the neighborhood of P_{1}. The arrowt on integral curves denote the direation of decrabing s_{0}
(2) : $P_{2}: \xi=0, \eta=m / 3$. This point is hyperbolic, one obrious solution being $\xi=0$. To find the other, wo procosd as above, setting $\eta=x / 3+\lambda \xi+\ldots 0 \theta$
in $(6,6)$. The result is the integral
$I_{2}: \eta=\frac{m}{5}\left[1-\frac{2(r-3)_{m}+3(2 r-3)}{9 r+3(r-1) m-20^{2}}\right\}+\ldots 0$
Note that here λ is negative for $\gamma \geqq 3$, positive for $\gamma \leqq 3 / 2$, and mey have eithor sign for intormodiate values. The disposition of solutions for the two cases are shown in Flgs. $3 a_{0}$ and $3 b_{0}$ The arrows have the same signifioanoe as abovec
(3): The points $P_{O^{\circ}} P_{-} P_{+^{0}}$ Let $\left(\xi^{*}, \eta^{*}\right)$ be tho co-ordinates of one of these points, and let $\lambda_{\mathbb{N}} \lambda_{D}$ be respoctively the slopes of $N=0_{0}$ $D=0$ at the point. Let

$$
\begin{equation*}
\xi=\xi^{*}+\xi^{0} \cdot \eta=\eta^{*}+\eta \tag{7.9}
\end{equation*}
$$

and 1et

$$
\begin{equation*}
\eta^{0}=\lambda \xi 0+0,00 \tag{7.10}
\end{equation*}
$$

Then, from (6.6), (6.7)

$$
\lambda=-\frac{\eta^{*}}{\xi^{*}} \frac{r\left(3-\xi^{*}\right)\left(\lambda-\lambda_{N}\right)}{\left(3 r-2 m-3 r \xi^{*}\right)\left(\lambda-\lambda_{\mathrm{D}}\right)},
$$

or

$$
\begin{equation*}
\left(3 r-2 \mathrm{~m}=3 r \xi^{*}\right) \lambda^{2}+\left[\frac{\gamma \eta^{*}}{\xi^{*}}\left(3-\xi^{*}\right)-\left(3 r-2 \pi=3 r \xi^{*}\right) \lambda_{\mathrm{D}}\right] \lambda=\frac{r \eta^{*}}{\xi^{*}}\left(3-\xi^{*}\right) \lambda_{\mathrm{N}}=0 \tag{7.11}
\end{equation*}
$$

Sino $\xi=(3 r-2 m) / 3 y$ is the vertical asymptote of $D=0$, wo have $\xi<(\pi r-2 m) / 3 r$ at axch of these points and thus at each point where $\lambda_{N} \geqslant 0_{0}$ cortalaly the roots of (7.11) aro roal and it is not a spital point. Now at $\xi=O_{2} N=0$ lies above $\gamma \eta=\xi=0$, and hance at P_{+}, the second inter. sbotion of these two curves, $N=0$ orosses $\forall \eta=\xi=0$ from below to above; henoo at $P_{+}, \lambda_{N}>0$ and P_{+}is never spiral. Hor cover, for the minimum on $N=O_{0}$ find the ξ conordinete

$$
\begin{equation*}
\xi_{\mathrm{min}}=3-\left[\frac{12_{r}-2(r-3)_{m}}{2 r-1}\right]^{1 / 2} \tag{7.12}
\end{equation*}
$$

and for m satisfying $(7,5)$ this is alway loss than $\xi_{0}=(3 r-3-2 n) /(3 y-1)$ So P_{0} alvays lies to the right of the minimum $\lambda_{N}>0$ thero, and it is not a spiral point. On the other hand, λ_{N} an have oithor sign at $P_{j p}$ so this poiat may be a spiral point.

Now coneider the point of the throe farthest to the right; sinoe $P_{-} \leqq P_{+}$, this will be oither P_{o} or P_{+}. Since the curves $N=O_{p} D=0$ hava θ_{0} respectivoly, the vertical asymptotes $\xi=30 \xi=(3 r-2 m) / 3 r, D=0.110 s$ above $N=0$ to the right of this point. Now considor any point to the right of and above the point, to the right of $D=O_{0}$ and to the left of $N=O_{0}$. Then the integral curve of $\left(\sigma_{6} 6\right)$ through this point has positive slope ${ }_{p}$ and so oannot crose $N=0$ or $D=O_{0}$ Henc it goos to the point P_{0} or P_{+}itselfo and the point must be a sheafopoint. On the other hand, at the noxt fartheot
point to the right，i．e．，the middle one of the three pointe（which can be oither P_{2}, P_{+}or $\left.F_{0}\right)_{0} N=0$ crosses $D=0$ from below to above as ξ inoreases． and it is readily soan that this impliss that the point is hyporbolio．Finally， at the point farthest to the loft the croseing is similar to that at the point farthost to the right，and this point is thorefore a sheaf－point if it is P_{0} a sheaf－point or a spiral point if it is P＿。 From these conclusions， wo can got a qualitative plature of the integral curves of $(6,6)$ in the region of tho plane containing $P_{2} P_{t} P_{\mathcal{O}^{g}}$ and this is shown in Figo H_{o} for the ordoring $P_{y} P_{0} P_{+}$for a oase in which P_{-}is not spiralo $A s$ before the arrows denote the direction of decroasing s ．The nature of the other casers $i_{0} 0_{00}$ those in which the middle point is P_{-}or P_{f} ia readily porcoived as follows：Interchange the meanings of P_{0} and $P_{-}\left(P_{f}\right)$ in Figo 4，draw as $\gamma \eta-\xi=0$ a line through the appropriatg pair，and ohange the arrows to correspond．，

The integral ourves marked $I_{-} I_{0}, I_{+}$are obtained by substituting the algebraically smallor of the roots of（7．11）in（7．10）and continuing the expansion。 In evory case，only intogral powers of ξ^{\prime} will appear．If the algebraically larger root is takon ，then at the middle point，aguin only integral powors will appear and（ 7,10 ）will be the ourve through the points $P_{0}, P_{\text {a }}, P_{\text {ro }}$ At the other two points however，the expansion with the larger root will yiold noneintegral powers，the smallest less than 2，and this torn will have a frec coofficient，thus giving the multiplicity of solutions。

Finally，the special cases in which two or more of the points $P_{ \pm} P_{0}$ coincide have not been discussed but the configuration of integral ourves in
those instanoes is readily inengined.
8. The Inward Motion; Dependence of the Exponent on the Compression Ratio of the Converging Shock. The problom of the imward motion can now be put as follows: For a given μ_{0} we require the value or values of m for which an integral ourve $P_{\mu} P_{ \pm} P_{1}$ exists and has the folloving properties:
(1) it orosses $\left.\gamma \eta_{0}\right\}=0$ only at $P_{+} \dot{q}$
(2) it does not go through P_{o};
(3) at P_{1} it lies below I_{1} 。

From $\oint 7$ wo see that there are al ways infinitely many integral ourves through one of the points $P_{,} P_{+r}$ and in general at least two through the other. This io a reilection of the fact that $\gamma \eta-\xi=0$ is one of the conditions for a characteristic through the origin, and in fact P_{p}, P_{+}correapond to curves $y=a f_{ \pm} t^{n}$ wioh are characteristics. This oan be proved direatlyi alternativelyo howeror, the exiatence of two valuos for $d u / d y$ is in itself proof. For it implies the possibility of a discontinuity, for exainple, in $\partial p / \partial y$ there, and ${ }_{p}$ since $p_{g} u_{g} \nabla$ are cootinuous, this would correspond to a sound rave. We have noted also that at P_{+}we have in general $d^{2} u / d v^{2}= \pm \infty$. and this gives $\partial^{2} p / \partial y^{2}= \pm \infty$, again a sound wave。 on the other hand, as we have observed in $\oint 7$, there are, if the two roots of (7.11) are distinot, two solutions through P_{-}and P_{+}wioh are analytio there. Thus, acoording as our solution coincides with one of these or not, a sound wave converging to the origin behind the shook mave will not or will be present in the solution obtained.

The condition (2) has not boen expliaitly noted before, but from (6.9) it ia evident that P_{0} is a pole of and so must be exoluded.

From Figs． 1 and 4 ，it is at once evident that solutions exist for some pairs (γ, μ) ，but we want to discuss the problem systematically．To begin，we shall disregard the restriction（5．3）on μ ，and observe only the weaker condition（7．2）．Apart from the fact that under the weak interpretation of（ 2,8 ）only（7，2）is sigalfioant there are analytic advantages in studying the problem in the nelghborhood of $\gamma /(\gamma+1)$ 。

In particular，if we consider the limiting oase when the shock is exactly sonic and $\mu=\gamma /(\gamma+1)$ ，then the point P_{-}or P_{+}through which the solution goes must lie exactly on the line $\xi+\eta=1$ ，and $\xi_{ \pm}=r /(r+1)$ 。 Combining this with（7．3）we obtain

$$
\begin{equation*}
\frac{r-1}{2(r+1)}-\frac{(r-2) m}{4 r}=\frac{ \pm \sqrt{[2 r+(r-2) m]^{2}-8 r^{2} m}}{4 r} \tag{8.1}
\end{equation*}
$$

For $Y \leqq 2_{0}$ the left side of $(8,1)$ is almas positive while for $\gamma>2$ ，it is negative or zero only for $m \geqq \operatorname{Tr}(\gamma-1) /(\gamma+1)(\gamma-2)$ 。 By（7．4）this is only possible if

$$
\frac{\gamma-2}{(\sqrt{r}+\sqrt{2})^{2}} \geq \frac{\gamma-1}{\gamma+1}
$$

or

$$
\frac{\sqrt{r}-\sqrt{2}}{\sqrt{r}+\sqrt{2}} \geqq \frac{r-1}{r+1}
$$

winch is equivalent to $r \leq 1 / 2$ 。 So（ 8,1 ）only has a solution for the positive radical，that is we can only have $\xi_{+}=r /(\gamma+1)$ 。 Solving $(8,1)$ ，we find

$$
\begin{equation*}
m=\frac{2 r}{3(r+1)} \tag{8,2}
\end{equation*}
$$

Now the above argument which excludes $\xi \quad>\gamma /(r+1)$ ，elso in fact exoludes $\xi,>\gamma /(\gamma+1)$ ，while for $\xi_{+}=r /(\gamma+1)=\mu_{y} P_{+}=P_{\mu}$ ．we have

m given by $(8,2)$ ．Wo now propose to show that for a solution $P P_{H} P P_{1}$ 。 $\mu<\gamma /(\varphi+I)_{0} P_{+}$must be bolow $\xi+\eta=I_{0}$ ．To this and we substitute $\xi=1-\eta$ in $(6,6)$ ，obtaining

$$
\begin{equation*}
\frac{d \eta}{d \xi}=\frac{(r=1) \xi^{2}+[2 r+3-(r-2) n] \xi=r(3 \infty \mathrm{n})}{\xi[3 r-3 m=(3 r+1) \xi]} \tag{8,3}
\end{equation*}
$$

How，in the positive ξ mirection solutions oross $\xi+\eta=1$ from above to below，or below to above，acoording as $(8,3)$ is less than or greater than －1．or according as

$$
\begin{equation*}
\frac{(\gamma+1) \xi-\gamma}{3 r-3 m-(3 r+1) \xi}>0 \tag{8.4}
\end{equation*}
$$

as is readily showna Here．the root of the numerator is the intersection of $\xi+\eta=1$ with $\gamma \eta-\xi=0$ when $(8,3)$ has the value ol，while the root of the demominator is its intersection with $D=0_{0}$ where（ 8,3 ）has the walue © ．So，in the direction of inoreasing ξ at a point above or below both ourves，solutions cross $\xi+\eta=1$ from above to below，whilo between the two solutions eross in the other direotion Suppose then $_{0}$ that P_{+}lies above $\xi+\eta=I_{j}$ it will then lie to the right of $\xi=\gamma /(\gamma+1)_{0}$ $\eta=1 /(\gamma+1)_{0}$ Suppose also that $\mu<\gamma(\gamma+1)_{0}$ Then a solution through P_{μ} crossea from above to bolow $\xi+\eta=1_{p}$ and will certainly remain bel ow until it meets $\gamma \eta-\xi=0$ or $D=0$ 。 Eut since \mathcal{P}_{+}is above $\xi+\eta=1$ ，the solution will \sim unless it goas to P a interseat $\mathcal{Y}=\xi=0$ bofore $D=0$ 。 Hence it cannot go to P_{+}

One further fact energes from the above argumento From（7．6），the slope of the solution I_{1} at P_{1} is $-(1+m) /$ 2n and for the m givan by $\left(8_{0} 2\right)_{0}$
this is less than - 1 . Hence I_{1} lies above $\xi+\eta=1$ at P_{1} and cannot cross it again without first crossing $\gamma \eta_{-} \xi=O_{0}$ Hence the solution I_{+}through P_{+}for the cese just disoussod, $i_{0} 00 \mu=\gamma /(\gamma+1)$ must lie below I_{1} at P_{1}, and hence must be a solution of our problem for the case of an exactly sonio shook.

Now consider a value of μ noar $\gamma /(\gamma+1)$; then m must be near $28 / 3(\gamma+1)$. We set

$$
\begin{equation*}
\mu=\frac{Y}{\gamma+I}(1-8) . \quad m=\frac{a r}{3(\gamma+1)}(1+c)_{j} \tag{8,3}
\end{equation*}
$$

here of course, $6>0$. From (7.3), we have

$$
\begin{equation*}
\xi+=\frac{1}{\sigma(r+1)}\left[\operatorname{lr}+1+(r-2) \varepsilon+(2 r-1) \sqrt{-\frac{2\left(2 r^{2}+13 r+2\right) \varepsilon}{(2 r-1)^{2}}+\frac{(r-2)^{2}{ }^{2}}{(2 \gamma-1)^{2}}}\right. \tag{8.4}
\end{equation*}
$$

08

$$
\begin{equation*}
\xi_{+}=\frac{r}{r+1}\left[1-\frac{3}{(2 \gamma-1)} \varepsilon-\frac{6(r+1)^{2}}{(2 r-1)^{3}} e^{2}+\ldots 0\right] \tag{8.5}
\end{equation*}
$$

From the fact that P_{+}lies below $\xi+\eta=1$, we have e >0 。
Next, we consider the solution I_{+}through $P_{+^{\circ}}$ For $\xi^{*}=\xi+$ $\eta^{*}=r^{-1 / 3}+(7011)$ reduces to

$$
\begin{equation*}
\left(3 r=2 m-3 r \xi_{+}\right) \lambda^{2}+\left[2\left(1-\xi_{+}\right)+m\right] \lambda-r^{-1}\left[(4 r-1) \xi_{+}-2 r+3-(r-2) m\right]=0 \tag{8.6}
\end{equation*}
$$

Substituting $(8,5)$ in $(8,6)$, we find, to terms of order one in ε

$$
\begin{equation*}
\lambda=-\frac{r+3+\sqrt{21 r^{2}+26 r+54}}{5 r} \tag{8,7}
\end{equation*}
$$

$+\frac{1}{25 r(2 r-1)}\left[\frac{3(3 r+4)(r+1)+239 r^{3}+603 r^{2}+480 \gamma+126}{\sqrt{21 r^{2}+26 r+54}}\right] e+\ldots$

Finally，substituting

$$
\begin{equation*}
\eta={\varphi^{-1}}^{-1}+\lambda\left(\xi-\xi^{+1}\right)+\nu\left(\xi-\xi^{t}\right)^{2}+\ldots \infty \tag{8,8}
\end{equation*}
$$

in $(6,56)$ ，and using $(8,5),(8,7)$ ，we obtain，to terms of order zero in ε
$y=\frac{2(r+1)}{5 \gamma^{2}} \frac{471+257 r+81 r^{2}-3 r^{3}+\left(72+25 r+7 r^{2}\right) \sqrt{21 r^{2}+26 r+54}}{30+79 r+18 r^{2}+3(6 r+5) \sqrt{21 r^{2}+26 r+54}}$

Setting

$$
\begin{equation*}
e=a_{1} \delta+a_{2} \delta^{2}+\ldots 0 \tag{8,10}
\end{equation*}
$$

$(8,5),(8,7),(8,8),(8,9)$ are now sufficient to determine $a_{2}, a_{2} ;$ we give below some numerical results

$$
\begin{align*}
& r=5 / 3, a_{1}=0309, a_{2}=-.327 ; r=3, a_{1}=0514, a_{2}=-.772 ; \\
& r=8, a_{1}=0.989, a_{2}=-3.20 \tag{8,11}
\end{align*}
$$

Thus，we have for mas a function of μ_{0} near $\mu=\gamma /(\gamma+1)$ ，a curve of the type shown in Figo 5o

The shaded area in the figure has the following meaning：We observe that for μ near $\gamma /(\gamma+1)$ ，the value of m given by（ 8.10 ）is ruot the only solution。 For the ξ co－ordinate of P_{0} is $(3 r-3-2 m) /(3 r-1)$ ，and this is less than $\varphi /(\gamma+1)$ for $m \sim 2 \gamma / 3(\gamma+1), \gamma>0_{0}$ 。 Hence P_{+}is a sheaf－point， and the configuration of solutions about it is that shown in Fig． 6 ，Clearly for the value of m which this figure represents，we have as well as the solution I_{f} corresponding to $\mu=\mu^{*}$ 。all solutions between I_{+}and the integral ourve $P_{r} /(\gamma+2)^{P}+9 s$ possible integrals from $\xi+\eta=1$ to P_{+}o
 and thus all values of μ on the interval $\mu(\mu<\gamma /(\gamma+1)$ 。 Also as possible integrals $P_{+} P_{I}$ ，wo have，as vell as I_{+}，all curves below I_{+} up to and including $P_{+} P P_{1}$ if $\xi \geq \xi_{0}$ ail curres up to but not inoluding $P_{+} P_{0} P_{i}$ if $\xi<\xi_{0}$ Thus，for $\mu \sim \gamma /(\gamma+1)$ ，the pairs（ $\mu_{0} m$ ）for winich solutions exist are not only the points on the curves given by（ 8.10 ），shown in Figo 5o but rather all，pointa in the shaded area show，

One faot，however，is to be observed with regard to the multiplicity of solutions，of the curves through $P_{+\theta}$ the integral I_{+}，and one of the fanily of positive siope are analytic thers as we have observed earlier； all others have infinite curvature。 Thus we have certainly one analytic solution $P_{\mu^{*}} P_{+} P_{1}$ ，and possibly ons other－the other will exist if the second analytio solution through P_{+}lies between I_{+}and $P_{Y} /(\gamma+1)^{P}$ above $\gamma \eta=\xi=O_{0}$ and betwesn I_{+}and $P_{+} P_{-1} P_{1}\left(P_{+} P_{0} P_{1}\right)$ below $\gamma \eta=\xi=0_{0}$ Whather this second analytic solution exists or not can only be investigated numericallyo and we shall not consider the question here。 We may observe however，that in the case of a procisely analogous question in the problem of a convarging free aurfaco（IA－210，po 27）the answer was negative．

It will be soon from Figo 6 that there are actually two solution through $P_{Y}(Y+1)$ wiah go to P_{1} ．Both corresoond to exactiy sonic shocks－the corresponding curve in the (y, t)－plane is an envelope of charsoteristics behind it．However，the one which ligs always below $\gamma \eta-\xi=0$ ，gives a curve in the (y, t) oplane whioh has at ash point greater curveture than the chsuracteristic through that point and so is in reality supersonic with reierence to the material． behind it．

Preserving the meaning given to μ in figo $\sigma_{s} i_{0} \theta_{0}$ the ξ co－ordinate of the interseotion of I_{+}with $\xi+\eta=I_{0}$ we have now to consider how the function $m\left(\mu^{*}\right)$ whose asymptotio value for $\mu^{*} \longrightarrow \gamma /(\gamma+1)$ is riten by

$(8.3),(8,10)$ may behave as μ^{*} * dooreases to values $\ll \gamma /(\gamma+1)$. We enumerate the possibilities whioh are oriticalo
(1) I_{+}and I_{1} through P_{1} become coincident;
(2) I_{+}and I_{2} through P_{2} beoone ooincident;
(3) P_{+}and P_{-}bocone coincident:
(4) P_{+}and P_{0} become coinoident.

The third and fourth possibilities aro not critical in the same sense as the first two, and we shall considor first (4) o If this happens for a particular $\mu^{*}=\mu_{1}, m=m_{1}$, without (1), (2). (3) having happoned carliero then for a slightly smaller value of μ^{*}, P_{0} will lie above P_{+}, and P_{+} will be hyperbolio. Henoe the multiplioity of solutions for a riven m_{8} corresponding to $\mu^{*} .<\mu<\gamma /(\gamma+1)$ will disappear at this point g beyund it $-i_{0} e_{0} m>m_{1}$, wo will have only, for given m, the solution corresponding to $\mu=\mu^{*}$ o. This situation moreover, up to the point where (1), (2), or (3) oocus, oould only be altered by m reaching a value for whioh P_{0} is above $\xi+\eta=1$ 。 But, for this. m would have to be less than $2 \gamma / 3(\gamma+1)_{0}$ aince for all greater valued, $5_{0}<r /(\gamma+1)$ ia readily derivod, and both numerical and geometrio considerations indicate that $m\left(\mu^{*}\right)$ is monotone de or casingo

Wo turn next to tho possibility (1) If this ooours, then I_{+}no longer represents a solution of our problem, so we have to consider ito In the first plaoe we observe that for this to happen, m must attain a valuo for whioh I_{1} at P_{1} lies below $\xi+\eta=1$, by virtue of the argument based on the enuation (8,3) and following that equation in the above text, Since always $m \leqq 2 r /(\sqrt{Y}+\sqrt{2})^{2}$, while the slope of I_{1} at P_{1} ia $m(1+m) / 2 m_{0}$ this can only
happen for $2 \gamma /(\sqrt{Y}+\sqrt{2})^{2}>1$ which is oquival ent to $r>6+4 \sqrt{2}$ ．Since wo are not interested in values of p of this order，wo do not oonsider（1） further。

Now suppose（2）ocours．Then insofar as the function $\eta(\xi)$ is cono corned ${ }_{0}$ wave at this point a solution of our problem corresponding to $\mu=0$ 。 For wo can take as our integral the line $\xi=0$ from $\xi=0, \eta=1$ to $P_{2^{\prime}}$ and the integral curve I_{+}from P_{2} to P_{1} ．Eowever P_{2} is a pole of s ， so this doos not satisfy（7．1）．But considar a value of μ^{*} alightly larger than zero．Then I_{+}will lie alightly above I_{2} and we have in fact solutions for μ arbitrarily close to zero．Thus the region in the（ μ, m ）－plane for points in which solutions exist would look qualitatively es in Figa 7。 Hero if（4）has not occurred before（1），the point（ μ_{1}, m_{1} ）will not appear a．s shown in the $\mathrm{fig}_{\mathrm{g}} \mathrm{m}_{8}$ and the shaded portion of the plane will extend to the horizontal ine through the intersection of $m=m\left(\mu^{*}\right)$ and $\mu=0$ ．We have，of course，assumed implioitly that $m(\mu)$ romins single－valued and increases ab μ^{*} deoreases throughout the range $0<\mu^{*}<\gamma /(\gamma+1)$ 。 There is no way to ostablish this analytically，but it is borne out by rough geometrio oonsiderations as woll as by numerical rosults，We do not． therefore，consider such possibilities as $\mathrm{d} \mu / \mathrm{d}_{\mu}{ }^{*} \rightarrow \infty$ ，oto．

Pinally，suppose we have（3）。 Then for some value $\mu^{*}=\mu_{0}>0_{0}$ $m\left(\mu^{*}\right)$ takes on the value $m_{a}=2 \gamma /(\sqrt{\gamma}+\sqrt{2})^{2}$ and the above analysis exhausts all oases in wish I_{+}is a aclution。 The continuation of the function $m\left(\mu^{*}\right)$ then obtains by passing to the intogral I＿through P＿For consider a value of m slightly less than m_{0} ，and lot $\mu_{p} \mu_{\mu}$ be the points of interseation of I_{+}, I_{-}with $\xi+\eta=1_{0}$ Then it is reasonable to suppose $\mu_{+}=\mu_{-} \sim \xi_{+}=\xi-$

- 38.

and fram $(7,3), \xi_{+}-\xi_{-} \sim\left(m_{0}-m\right)^{1 / 2}$. So at $\left(\mu_{0} m_{0}\right)$ wo have

$$
\begin{equation*}
m_{0}-m\left(\mu^{*}\right) \sim\left(\mu_{0}=\mu^{*}\right)^{2} \tag{8,12}
\end{equation*}
$$

and thus $m\left(\mu^{*}\right)$ has a horizontai tangent at $\mu^{*}=\mu_{0^{*}} m=m_{0}=\operatorname{zr} /(\sqrt{\gamma}+\sqrt{2})^{2}$ 。 The value μ_{0} must be found numorically in any given case。

Now let us return to a consideration of (4$)_{0}$ and let us also oonsider the question of the coincidence of P_{0}, P_{-}. We have than $\xi_{0}=\xi_{ \pm}$or

$$
\begin{equation*}
\frac{3 r-3-2 m}{3 r-1}=\frac{2 r+(r-2) m+\sqrt{[2 r+(r-2) m]^{2}-0 r^{2} m}}{4 r}, \tag{8,13}
\end{equation*}
$$

or

$$
\begin{equation*}
2 r\{3 r-5)-\left(3 r^{2}+r+2\right) m= \pm(3 r-1) \sqrt{[2 r+(r-2) m]^{2}-8 r^{2}} \tag{8.14}
\end{equation*}
$$

In particular, suppose all three points P_{0}, P_{f}, P_{+}aro ooincident, Then

$$
m=2 \gamma /(\sqrt{\gamma}+\sqrt{2})^{2}=2 \gamma(3 r-5) /\left(3 r^{2}+r+2\right)
$$

and this yiolds

$$
\begin{equation*}
3(2 \gamma)^{3 / 2}-10(2 \gamma)^{1 / 2}-8=0 \tag{8,15}
\end{equation*}
$$

This equation has one real root, namelyo

$$
\begin{equation*}
r=2.289730 \tag{8.16}
\end{equation*}
$$

Now suppose Y is less than this root. Then the left side of (8,14) is negative for in $=2 \gamma /\left(\sqrt{\gamma}+\sqrt{2}^{2}\right.$ and increases to $2 r(3 \gamma-5)$ as m decreases to zero. The right side (with the negative sign) decreases from zero to $\operatorname{mar}(3 \gamma-1)_{0}$, Hence for $r>1$, there will be a value of m for which the two sides are equal, that is for wish the points P_{0}, P_{-}coincide. On the other hand suppose r exceeds the root of (8.15). Then for $m=2 \gamma /(\sqrt{\gamma}+\sqrt{2})^{2}$

the right side of（ 8.14 ）is positive and $P_{0} 110 s$ to the right of $P_{\psi^{\circ}}$ Since we have already seon that it lies to the left for $m=2 \gamma / 3(r+1)$ ，there is an intermediate value for whioh the two coincide．

In either of the above cases，or in the oxoeptional case when $P_{0} P_{p}$ P_{+}all coinoide（ $(8,15)$ holds $)$ ，the value of m where P_{0} coincides with $P_{d} P_{+\rho}$ is obtained by solving（ 8,14 ）。 Squaring both sides and collecting terma we have

$$
\begin{equation*}
G r(r-1)=3\left(2 r^{2}-r+1\right) m-\left(3 r^{2}-3 r+2\right) m^{2}=0 \tag{8.17}
\end{equation*}
$$

This oquation has only one positive root for $\gamma>I_{0}$ so P_{0} ooincides with $P_{-\infty}$ or P_{+}for exactly one value of m on the interval $0<m \leqq 2 \gamma /(\sqrt{\gamma}+\sqrt{2})^{2}$ 。 The coinoidence is wh P_{-}，both，or P_{+}aocording as γ is loss than，equal to，or greater than the root r_{0} of（ 8,15 ）．We also observe that for $\gamma=\gamma_{0}$ ． m $\sim m_{0}=2 r_{h} /\left(\sqrt{\gamma_{0}}+\sqrt{2}\right)^{2}, \xi_{-}$decreases as m deoreases。 ξ_{+}incroases with $\left(m_{0}-m\right)^{1 / 2}, \xi_{0}$ with $\left(m_{0}-m\right)$ So for $r=r_{0}$ ，P_{0} lies always betweon P_{-}, P_{+}

We are now in position to continue our analysis of the dependence of mon μ_{0} Consider first the solution I＿through $P_{\text {＿}}$ for values of masar $2 r /(\sqrt{\varphi}+\sqrt{2})^{2}$ 。 If wo do not have for some $m<m_{0}$ ，the situation pictured in Fig．7，and already discussed，then for m $\sim m_{0} I_{\text {＿intersects }} \xi+\eta=1$ at a point $\xi=\mu^{*}, \quad \eta=1-\mu^{*}, \mu^{*}>0$ ．The point P＿will be a sheaf－point or a hyperbolio point，moreover，according as P_{0} lies to its right or its 1eft，that is according as $Y \geqq Y_{0}$ or $\gamma<\gamma_{0}$ ．Hence in the second case， for the value of m in question，there is only the solution I_{ρ} while in the first the solutions in the neighborhood of P look as in Fig． 40 Not only

does the curve I＿interseat $\xi+\eta=1$ ，but all integral curves entering
 of μ on the interval $0<\mu<\mu^{*}$ 。 Horeover，not only can wo take I_{-}as the integral from $P_{\text {＿}}$ to P_{I} ，but also any integral curve between I_{-}and the broken curve $P P_{0} P_{1}$ ．

It remains to be oonsidered what may happon on the 1 oftohand branch of the funotion $\mu^{*}(\mathrm{~m})$ as m deoreases to values $\ll z_{\gamma} /(\sqrt{\gamma}+\sqrt{2})^{2}$ 。The possibilitios are as follows：
（1）I＿bocomes coinoident with I_{1} through P_{1} ：
（2）$\mu^{*} \rightarrow 0, \mathrm{~m} \rightarrow 0_{3}$
（3）I＿beoomes coinoident with I_{2} through P_{2} i
（4） P_{m} becomes a spiral point．
We diepose of the first at ono．By an argument previously given it certainily oannot happen for $\varphi \leqq 6+4 \sqrt{2}$ and we are not concerned with largor Y 。

With regard to（3）（4）both，we first observe that neithor is possible so long as the minimum point of $\mathrm{N}=0$ lies to the loft of $\xi=0$ ，that is as long as

$$
3=\left[\frac{12 r-2(r-3) m}{2 r-1}\right]^{1 / 2}<0
$$

by（ 7.12$)_{s}$ and thus as long as．

$$
3(2 r-3)+2(r-3) m<0
$$

This holde for all m if $r \leqq 3 / 2$ ，so for such φ wo have definitely（2）For $\xi \longrightarrow 0$ ，the solutions of our equation apart from I_{2} through P_{2} aro asymptotically

$$
\eta^{3 r-2 m} \xi^{3 r}=\text { const. }
$$

soform～0，$\quad \eta \gg 0$ ，

$$
\eta \xi=\text { const }
$$

Thus the dosired solution is asymptotically

$$
\xi \eta=\mu
$$

for $m \rightarrow 0_{0}$ Since $\xi_{\sim} \sim \eta_{-} \sim m_{0}$ we have for $\varphi \leq 3 / 2_{0}$ and the curve $m\left(\mu^{*}\right)$ has a vartical tangont at $m=0$ 。

Now oonsider $\varphi>3 / 2, m \sim 0_{0}$ To terms of ordor 1 in m_{0} wo have $\xi_{-}=\pi / 2, \eta=m / 2 f$ ，while the η－cosordinate of P_{2} is $m / 3_{0}$ and the slope of I_{2} is $-\left(a_{\gamma}-3\right) \mathrm{rl} / \mathrm{rr}$ ．Hence，for $\xi=\xi$ ，the η oooordinate of the corres－ ponding point on I_{2} is $m / 3_{p}$ to terme of order one in m_{0} while $\eta_{-}=m / \gamma_{\text {．}}$ ． Hence，for some value of $m>O_{B}$ oithor（3）or（4）obtains．

Our analyais of the interdependenoe of $m_{p} \mu$ is now as complete as it oan be made without resort to numorical mathods．In particular，the question of whether（3）or（ 4 ）holds for $Y>3 / 2$ can only be determined numerically。 If（3）holds thon $\mu^{*}(m)$ approacher zero as m．approaches some value greator than zero while if（4）holds there is a point $\mu^{*}>O_{0} m>0$ on the curve $\mu=\mu^{*}(m)$ beyond which it oannot be dofined，and the region in the（ m, μ ）mplane for whose points solutions exist will have a qualitatively different appearanoe。 In Figs． 8 we show in a qualitative way the nature of this rogion．In each of the various cases pictured in Figs．8n to 8d the complete ourve $\mu=\mu *(m)$ is draw assuming（3）．If（4）holds instead，the loftohand end of the shaded portion has the appearance shown in Fig．80。 Hote that in all casee there is an intorval of values of μ for which a unique m exists．This interval of courso becomes a point for $\gamma=Y_{0}$ ．Note also，that except on this interval sach point of the region pictured rapresenta not one，but a oneopermeter family of solutions，by virtua of the multiplioity of solutions
from $P_{ \pm}$to P_{1} in any givon caso．Finally，itis to be roomled that for each point on the curve $\mu=\mu^{*}(n)$ it is possible to find an analytic solution $P_{\mu} P_{+} P_{I_{1}}$ ，namely I_{+0} It is poseible also that the shaded regione contain aros along whioh this is possible（Of pp．35），but in generalo solutions corresponding to points in the shaded regions lead to solutions of the original problem in which a sound wave converges to the origin bohind the shook arriving simultaneously with it。 It soems reasonable therefore θ_{0} In the absence of other criteriag to prefer the solutions corresponding to points on the curve $\mu \neq \mu^{*}(\mathrm{~m})$ 。

Fige． 8 are，of course ，to be taken as piving nothing more than a qualitative pioture of the solution：quentitative reauts can only be obtaingd by numerical analysis。 In $\oint 10$ we shall give somo numerical data for various Y 。

In conclusion，we note that in addition to the solutions we have already taken account of，there are others as well，in which more than one converging shook wave is present。 For，first consider the solution I_{+}from P_{+}to P_{1} is For $\mu \sim Y /(\gamma+1)_{0}$ we have from $(8,7)$ that the slope of I_{+}at P_{+}is less than $=1_{c}$ Henoe the point $\left(\xi_{2} \eta_{2}\right)$ into whioh a point $\left(\xi_{1} \eta_{1}\right)$ near P_{+}on I_{+0} below $\gamma \eta_{0} \xi=0_{0}$ is transformed by $(6,18)$（ 6.19 ）lies to the right of I_{+0} and of couree ebove $Y \eta-\xi=0$ and below $\xi+\eta=1$ g Henco 1t 1100 on an integral curve which can bo taken into P_{+}．That is from the point $\xi_{1} \eta_{1}$ we can pass by shock to $\xi 2^{2} \eta_{2}$ them baok to P_{+}and thonce to P_{1} or or this procedure can be repeated as often as one likes．

Next ${ }_{n}$ consider the behavior of the potat $\left(\xi_{2} \eta_{2}\right)$ as $\left(\xi_{1} \eta_{1}\right)$ moves awny from P_{+}on $I_{+o} A s\left(\xi_{1}, \eta_{1}\right)$ approaches $P_{1}, \xi_{2} \rightarrow 0, \eta_{2} \rightarrow I_{0}$ So for some
$\left(\xi_{1} \eta_{1}\right)_{\theta}\left(\xi_{2} \eta_{2}\right)$ lion on I_{+}above P_{+}and wo oan pase to $\left(\xi_{2} \eta_{2}\right)$ by shook ${ }_{0}$ and thon again along I_{+}to $\left(\xi_{1} \eta_{1}\right)$ 。 This also can be ropoated as often as one likes．

Now，suppose $\mu^{*} \ll \gamma /(\gamma+1)$ ，but still greater than μ_{0} ，and consider the point $\left(\xi_{2} \eta_{2}\right)$ as $\left(\xi_{1} \eta_{2}\right)$ varies from P_{+}to P_{1} 。Again $\left(\xi_{2} \eta_{2}\right)$ mover from P_{+}to $\hat{S}_{2}=O_{0} \eta_{2}=I_{0}$ and honoc，if $I_{\text {＿}}$ interseots $\xi+\eta=I_{0}$ $\left(\xi_{2} \eta_{2}\right)$ lies on I_{-}for sone $\left(\xi_{1} \eta_{1}\right)$ ．In this ouse。 we oan pass by shock from the point $\left(\xi_{1} \eta_{1}\right)$ to $\left(\xi_{2} \eta_{2}\right)$ on I_{2} and thence to P_{-}and P_{1} 。

Finelly，consider the solution $I_{\text {fo }}$ from P_{-}to P_{10} in the case that P_{-} ia a shoaf－pointo $A \in\left(\xi_{1}, \eta_{1}\right)$ moves along $I s$ the point $\left(\xi_{2} \eta_{2}\right)$ into which it is transformed by the shock conditions，must ultimately crose all solutions between $I_{\text {＿}}$ and I_{2} through P_{2} above $Y \eta_{0} \xi=0$ ，and since all of these go to P without crossing that line ${ }_{0}$ we on pass by shook to any one of themo This process aldo can be repeated as often as one likes．

The ciroumstance under wich it is not olear from the above that solutions invoiving more than ono convergent shock exist are these：（1）the oase piotured in Fig， 7 with $\mu \ll \gamma /(\gamma+1) ;(2)$ the case of a solution through P_{+}if $\mu \rightarrow 0$ on the left hand branch of the curves shown in Figso 9_{s} for a value of $m \gg 2 \gamma / 3(\gamma+1) ;(3)$ the case of a solution through P ，when P＿is a hyporbolic point．Whether or not thore aro pairs（ $\mu_{\mathrm{s}} \mathrm{m}$ ）falling under one or another of these cases and for which no further shock is possible。 if a question whioh can only be investigated numerically．

9．The Solution for the Outward Motion．From the discussion in $\oint 6$ of the boundary conditions（b）for $t=0_{0}$ it is clear that the solution is continued beyond P_{1} to the region $t>0$（in the ordinary senso），simply by taking the

analytic continuation of the solution $P_{ \pm} P_{1}$ for $\xi>1$ ．This solution continues to a point $\left(\xi_{1} \eta_{1}\right)$ for wich tho $\left(\xi_{2} \eta_{2}\right)$ given by（ 6.18 ）。 $(6,19)$ lies on a curve entering P_{0} or on the curve through P_{∞} o $\xi=(3 r-3-2 m) /(3 r-1), \eta=\infty$ ．Since the latter is not a singular point， ther is only one solution through it．

We shall now show that the latter is the only possibility．For， suppose P_{0} is above $\psi \eta-\xi=0_{\text {。 }}$ Then it lies either to the right of P_{+} or to the left of P_{-}and is thue a shoaf－point ${ }_{\rho}$ according to $\oint 7$ ．Tho configuration of integral curves about it is therefore oxther that shown in Fig．9a，or that shown in Fig．9b，the arrows indioating the direction of deoreasing m_{0} ．Since must inorease to $+\infty$ at $x=0_{0}$ it follows that none of these enlutiona is aocoptables on＇all of thom $\rightarrow-\infty$, as $(\xi, \eta) \rightarrow P_{0}$ ．

Next consider the case that p_{0} lies below $\gamma \eta-\xi=0$ ，Then the configuration of integral curves about it is that shown in Fig． 40 of the two ourves through it．I_{0} is the only one along wich sinoreasea to $+\infty$ a：$(\xi, \eta) \rightarrow P_{0}$ But the point $\left(\xi \xi_{2}\right)$ must lie above $\gamma \eta-\xi=0$ and I_{0} oanot oross $\gamma \eta-\xi=0$ at either $P_{\text {a }}$ or P_{+}So in this case alsos a solution anding at P_{0} is impossible。

The only possibility，therefore，is the solution ending at

$$
\xi=\frac{3(r-1)-2 m}{3 r-1} \quad \eta=\infty
$$

Note that $\xi=[3(r-1)-2 m] /(3 r-1)$ is the vertical asymptoto of $D=0$ ， and that by simple geometrical considerations，the integral curve in question remains between this asymptote and $D=0$ until it enters the uppermost of the pointe P_{0}, P_{+}，whioh it must do．To find the point on it corresponding to the shook，one has in general to integrate both $(6,6)$ and $(6,9)$ through the point
$P_{\mathbb{1}}$ ，and then taking as $\left(\xi_{1}, \eta_{1}\right)$ point on the continuation of the （ $\xi \circ \eta$ ）ecurve through P_{1} ，form the（ $\xi 2, \eta_{2}$ ）of this point by（ 6.18 ） （ 6.19 ）and find the $\left(\xi_{2} \eta_{2}\right)$ which lies on the ourve which is ahown above to correspond to the highmpessure side of the shook，Only in the case $\mu=(\gamma-1) /(\gamma+1)_{0} C=0_{0}$ whon g disappears from（6．19），is a simpler altornative available。 In this case we oan form the $\left(\xi_{1}, \eta_{1}\right)$ of all （ $\xi \xi^{\prime} \eta_{2}$ ）on the curve through P_{∞} ，end then seok the point of intersection of the resulting $\left(\xi_{1}, \eta_{1}\right)$－curve with the solution from P_{1} ：
10．Numerical Reaults．For the determination of the function $\mu=\mu^{*}(\mathrm{~m})$ 。 we have an a starting point，for any value of γ_{0} the point $\mu=\varphi /(\varphi+1)$ ． $m=2 p / 3(r+1)$ ，and by use of equations $(8,3)-\left(8_{\mathrm{c}} 10\right)$ ，we onn find the slope and curvature at this point，as illustrated in equation（8．11）a natural next stop is to dotermine $\mu_{0}=\mu^{*}$ for $m=2 \gamma /(\sqrt{\gamma}+\sqrt{2})^{2}$ ，where we know $\mathrm{d} m / \mathrm{d}_{\mu}=0$ ．This we have done for $r=5 / 3, r=30 r=8$ ，finding， respoctively，$\mu_{0}=03118_{9} \mu_{0}=02530 \mu_{0}=.0650$ This provides us with fire data to which to fit the desired curve，namely，the two points $\mu=\gamma /(\gamma+1)_{0} m=2 \gamma / 3(\gamma+1) ; \mu=2 \gamma /(\sqrt{\gamma}+\sqrt{2})^{2}, m=m_{0} ;$ the slope and ourvature at the firsts and the slope at the socond．Approximations so determined have been found quite acourate，exoept near $\mu=0$ ；thus，for $r=5 / 3$ ，the approximation given $m=0453$ ，for $\mu=(\gamma-1) /(\gamma+1)=025$ ， while actual integration with $m=0453$ ，gives $\mu=$ 。252。 Similarly for $\gamma=3$ ，the approximation givos $m=.572$ for $\mu=.50$ ，while aotual integration with m $=0.572$ givos $\mu=.497$ 。

For the sake of oompleteness，in one case，$\gamma=3$ ，the curve $\mu=\mu^{*}$（ (\mathbb{m})

has been investigated in the neighborhood of $\mu=0$ ．It was found that for $m=0433$ ，$I_{\text {＿}}$ and I_{2} become coincident，so $\mu=0_{0} m=0433$ is the left－hand ondpoint on this curve．In addition the point $m=.50 \mu=.038$ was found． On the basis of these various numerioal results，we have provided，in Figs． $10 \mathrm{a}, 10 \mathrm{~b}, 10 \mathrm{c}$, approximate graphe showing the regions in the（ $\mu_{0} \mathrm{~m}$ ）oplane for points in whioh solutions exist，for the three valued $r=5 / 3, r=3$ 。 $r=8$ ，respectively，and omitting the lower leftohand portions for $\gamma=5 / 3$ 。 $r=8$ ．These graphe are belleved to be accurate to within two per cent． In the case $r=3, m=.572(n=0636), \mu=0497$ ．a complete numerieal integration of the problem has been oarried out．Fig． 11 shows in the （ ξ, η ）oplane the curve $P_{\mu} P_{+} P_{I} P_{S_{1}}$ ，where $P_{S_{1}}$ corresponds to the lowo pressure side of the reflected shook，and the ourve $P_{S_{2}} P_{\infty}, P_{S_{2}}$ corresponding to the highopressure side of that shock．The oritical ourves $N=O_{0} D=O_{0}$ $r n-\xi=0$ are also shom in the figuro．In Fig。12o the function $=-\log w$ in its dependence on ξ^{\prime} is given．From these two curves ${ }_{0}$ all physioally pertinent functions can be determined．In particular，for the inward motion， $x=a w t^{n}, y=a f(w) t^{n}$ ，while the position of the shook in the twe frames of reference is $x_{S}=a w_{S} t^{n}, y_{S}=a w_{S} t^{n}, w_{S}=\left[(1-\mu) \mu^{p}\right]^{1 / 2(1+m)}$ ．So $x / y_{S}=w / w_{S}, y / y_{S}=f(w) / w_{S}$ ；and $f(w)$ gives us y / y_{S} as a function of x / x_{S} ． This function is shown in Figo 13 。 Moreover，all physical quantitios are functions of f and thus of y / y_{S} multiplied by appropriate soaling factors and powers of t_{s} so that by a suitable choice of units（depending on time） all suoh quantities can be expressed as functions of y / y_{S} alone．Thus，if Jis shook velocity；p_{S} pressure at the shook front，both at time t_{8} then $w / J_{0} \mathrm{p} / \mathrm{p}_{\mathrm{S}}$ are functions of $\mathrm{y} / \mathrm{y}_{\mathrm{S}}$ alones similariy ρ / ρ_{0} is a function of y / y_{S}

 respeotively. In order to have comparable graphs for the outward motion it is now convonient to imagine the incident shook mirror-reflected in the yoaxis, thus preserving the meaninge of $x / y_{S^{3}}, y / y_{S}, w / U_{3} p / p_{S}$. Adopting this procedure ${ }_{0}$ we have show, in Figs. 17, $18,19,20, x / y_{S}, \rho / \rho_{0}, w / \sigma_{0}$ $\mathrm{p} / \mathrm{p}_{\mathrm{S}}$ as functions of $\mathrm{y} / \mathrm{y}_{\mathrm{S}}$. Thus for example, to read from Figo 20 the value of the pressure p at a point y_{0} and time t_{0} after collapse one finds the values of y_{S} and p_{S} at the time t_{0} before oollapse, and finds p / p_{S} at y_{o} / y_{S}. A table of ralues of $\xi, n, S, x / y_{S}, y / y_{S}, \rho / \rho_{0}, w / U, p / p_{S}$, over both epoche of the problem is given in Table I_{0}

Sxplanatios of Tables and Graphs. As pointed out in the abstract, a value of μ (that is, the value of v on the inoident shook), leads in general to a range of values of n_{g} of which one oorresponds to an analytic solutiono Thus, if $m=1-n / n$, there will be a function $m(\mu)$ defined on the interval $0<\mu<\gamma /(\gamma+1)$ oorresponding to pairs (m, μ) for which adalytio solutions exist, and other points in the plane corresponding to pairs (mop) for which non-analytiofsolutions exist. The possible (qualitative) nature of these functions is shown in Figs. 7. Bia to 8 d , and in each figure, the shaded portions represent the regions correaponding to non-analytic solutions. The value of ψ_{0} is 2.2897^{+}. Fig. 80 shows a variant of the left-hand end of the figure which is possible rather than that shown in Figs. 8b to 8d. No instances of this have been found, however, and in addition, no instances of Fig. 7 have been found. If the latter occurs at all, it is only for very large r - that is $r>8$.

For $\gamma=5 / 3, \gamma=3, r=8$, the function $m(\mu)$ discussed in the proceding paragraph has beon determined to $w i$ thin about 2 por conta except for $\mu \sim 0$

in the osses $r=5 / 3, r=8$, and is shown in Fige。10a, 10b, 100 .
For $Y=3, \mu=0497$, we have $m(\mu)=.572(n=0636)_{8}$ and for this oese. a complete numerical integration of the problem has bean oarried out. If $y_{S}, U_{0} p_{S}$ represent respeotively the position velooity, and pressure of the incident shook at time t_{p}, then by virtue of the assumption of similarity y_{0} $x / x_{S}, \rho / \rho_{0}, w / J_{0} p / p_{S}$, where x is the Lagrangian radius, p is density, p_{0} is normal density, u is velocity, p is pressuro, are all functions of y / y_{S}. These funotions are shown in Figs。13, 14, 15, 16. When the incident shock reaches the oenter, it is reflected and moves out through the material again. To see this epooh of the motion on the same soale at the inooming we imagine the inoident shook mirrororeflected in the y-axis, so that $x / y_{S}, \rho / p_{0}, w / U_{p} p / p_{S}$, remain functions of y / y_{S} o These are shown in Figa. 17, 18, 19, 20. That is, for example, to find p at
a time t_{o} after collapse and positions y_{0}, one finds y_{S} and p_{S} at the time t_{0} before collapses and then determines p / p_{S} at y_{0} / y_{S} from Figo 20.

The last five oolums of Table 1 give the results desoribed in the two proceding paragraphs in tabular formo

APPROVED FOR PUBLIC RELEASE

)	$\therefore \quad-$		- .	-)	, ":)	
	ξ	η	S	x / x_{S}	y / y_{S}	ρ / ρ_{0}	$0 / 0$	$\mathrm{p} / \mathrm{p}_{S}$	
	.497	- 503	-. 3856	1.000	1.000	2.012	- 5030	1.000	
	. 56	-3771	- .9974	1.118	1.062	2.085	- 0.4674	. 987	
	. 62	. 2821	-1.1082	1.250	1.233	2.165	.233014	. 966	
	. 68	-2050	-1.2307	1.422	1.226	2.244	-3925	.935	
	.74	.1419	-1.3682	1.620	1.352	2.325	-3516	-887	
	.80	. 0905	-1.5330.	1.911	1.535	2.408	-3071	-817	
	. 86	. 0495	-1.7481	2.370	1.837	2.496	. 2572	-712	+
	.92	.0190	-2.0784	3.297	2.467	2.595	. 1973	-548	
	095	.0083	-2.3564	40353	3.200	2.650	-1600	-425	
	.97	.0037	-2.6626	5.384	3.911	2.689	-1173	-259	
	1.99	.0004	-3.3160	11.361	8.152	2.734	.0815	.147	
	$1.00 *$	0 *	$\bigcirc 0^{* *}$	∞^{*}	- *	2.759*	- 0 *	0*	
	1.01	.00045	-3.3188	11.394	8.075	2.782	-. 0807	.164	
	1.0302	. 005	-2.5691	50385	3.762	2.846	-.1132	- 412	
	1.0582	.030	-2.0314	30.145	2.140	3.002	-.1245	-967	-i
	1.0644	.060	-1.8361	2.587	1.746	3.057	- 1124	$1: 183$	
	1.0635	.075	-1.7757	2.435	1.637	3.096	$\therefore 1039$	1.315	111
	1.0588	-10	-1.7011	2.258	1.511	3.148	$\therefore 0888$	2.515	Hal
	1.0454	-14	-1.6165	2.077	1.384	30235	-00628	1:802	
	1.0267	${ }_{0}^{18}$		1.961	1.303	3.318	-.0347	2.071	
	$\left\{\begin{array}{r}1.010 \\ .820\end{array}\right\}^{* *}$	$\left\{\begin{array}{l}021 \\ 0.40\end{array}\right\}^{* *}$.	$\left\{\begin{array}{l}1.1 .5273 \\ -1.5213\end{array}\right\}^{* *}$	1.900**	1.262 **	$\left\{\begin{array}{l}3.377 \\ 4.160\end{array}\right\}$	$\left\{\begin{array}{c}-0.0126 \\ .2272\end{array}\right\}^{* *}$	$\left\{\begin{array}{l}2.068 \\ 40.320\end{array}\right\}^{* *}$	
	. 83126	. 45455	-1.4247	1.724	1.165	3.900	. 1966	3.964	
	-84293	. 55556	-1.2936	1.513	1.044	3.608	-1640	30663	
	. 85201	. 71429	-1.2466	2.306	-922	3.337	.1364	30431	
	. 85936	1.00000	-. 9645	1.088	. 788	3.060	- 1108	3.258	
	.86537	1.66667	- 07047	0839	. 630	2.729	-0848	3.106	
111	. 87054	5.00000	- 01710	-492	-396	2.197	. 0513	2.99	
	.87163	10.00000	$+81466$. 358	- 300	1.943	.0385	2.99	
	.87289	∞	∞	. 0	0	0	0	2.99	

Table I

(W)

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

(mon)/m,

Fig 14

Fig. 18

APPROVED FOR PUBLIC RELEAS

Fig 19

